A fundamental question in cell biology is how surface topography regulates cell behavior. Our previous and ongoing work has focused on defining the topography of native basement membranes and determining the """"""""phenotypic impact"""""""" of biologically relevant length scales on modulating corneal epithelial cell behaviors. Using silicon surfaces patterned with grooves and ridges, we have shown that biologic length scale topographic features modulate corneal epithelial cell orientation, adhesion, migration and proliferation. Topography also influences the architecture and orientation of focal adhesions as well as the distribution and orientation of cytoskeletal elements within the cell. Importantly, we have demonstrated that a transition in the cellular response to topography for many behaviors occurs at approx. 1,200 nm pitch (pitch = ridge + groove width) with the greatest impact of topography generally occurring in the nanoscale range, the range of feature sizes found in the native basement membrane. It is possible that the observed effects are caused directly (e.g. biomechanical transduction events initiated at the cell membrane) and/or indirectly (e.g. the topography of the substratum dictates the density and/or distribution of adhesion complexes which in turn modulate cell behaviors). Preliminary data support the central hypothesis that nanoscale (1-100 nm) and submicron (<1 mu m) topographic features of the substratum, characteristic of those found in the native corneal basement membranes, constrain focal contact architecture resulting in altered signaling and cellular responses. These studies have relevance to our fundamental understanding of the role that topographic cues play in the normal development and maintenance of the corneal epithelium. Furthermore, data generated will contribute to the genesis of novel strategies in tissue engineering and advance the development of ocular prosthetics. We have assembled a strong interdisciplinary team of senior investigators to test the following hypotheses: Hypothesis 1: Integrins and syndecans mediate cellular responses to topographic cues. Hypothesis 2: The scale of topographic features modulates the activity of the Ras superfamily of GTPases. Hypothesis 3: The scale of topographic features modulates matrix receptor kinase targets that, in turn, modulate cell behaviors.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
7R01EY016134-04
Application #
7675999
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Shen, Grace L
Project Start
2006-09-01
Project End
2011-08-31
Budget Start
2009-09-01
Budget End
2011-08-31
Support Year
4
Fiscal Year
2009
Total Cost
$371,408
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Thomasy, Sara M; Raghunathan, Vijay Krishna; Miyagi, Hidetaka et al. (2018) Latrunculin B and substratum stiffness regulate corneal fibroblast to myofibroblast transformation. Exp Eye Res 170:101-107
Miyagi, Hidetaka; Jalilian, Iman; Murphy, Christopher J et al. (2018) Modulation of human corneal stromal cell differentiation by hepatocyte growth factor and substratum compliance. Exp Eye Res 176:235-242
Raghunathan, Vijay Krishna; Thomasy, Sara M; Strøm, Peter et al. (2017) Tissue and cellular biomechanics during corneal wound injury and repair. Acta Biomater 58:291-301
Thomasy, Sara M; Cortes, Dennis E; Hoehn, Alyssa L et al. (2016) In Vivo Imaging of Corneal Endothelial Dystrophy in Boston Terriers: A Spontaneous, Canine Model for Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 57:OCT495-503
Strom, Ann R; Cortés, Dennis E; Rasmussen, Carol A et al. (2016) In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry. Vet Ophthalmol 19:50-6
Strom, Ann R; Cortés, Dennis E; Thomasy, Sara M et al. (2016) In vivo ocular imaging of the cornea of the normal female laboratory beagle using confocal microscopy. Vet Ophthalmol 19:63-7
Horikawa, Taemi; Thomasy, Sara M; Stanley, Amelia A et al. (2016) Superficial Keratectomy and Conjunctival Advancement Hood Flap (SKCAHF) for the Management of Bullous Keratopathy: Validation in Dogs With Spontaneous Disease. Cornea 35:1295-304
Ali, Maryam; Raghunathan, VijayKrishna; Li, Jennifer Y et al. (2016) Biomechanical relationships between the corneal endothelium and Descemet's membrane. Exp Eye Res 152:57-70
Yáñez-Soto, Bernardo; Leonard, Brian C; Raghunathan, Vijay Krishna et al. (2015) Effect of Stratification on Surface Properties of Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 56:8340-8
Kol, Amir; Arzi, Boaz; Athanasiou, Kyriacos A et al. (2015) Companion animals: Translational scientist's new best friends. Sci Transl Med 7:308ps21

Showing the most recent 10 out of 41 publications