Docosahexaenoate phospholipids (DHA-PLs) are uniquely abundant in retinal and neuronal cells. Our basic research led to the discoveries that oxidation of DHA-PLs results in the generation of carboxyethylpyrrole (CEP) modifications of proteins and ethanolamine phospholipids whose levels are elevated in retinas and blood from individuals with age-related macular degeneration (AMD). Subsequent research revealed that CEPs stimulate angiogenesis found in the choroidal neovascularization of wet AMD through a vascular endothelial growth factor-independent mechanism involving Toll-like receptor (TLR)2 signaling. CEPs also contribute to the global retinal atrophy of dry AMD by IFN? and IL-17-producing CEP-specific T cells that promote M1 polarization of macrophages in the retina. Our most recent studies revealed that oxidized DHA-PLs release HOHA-lactone that can dissociate from cell membranes and react with proteins to generate CEPs, previously only known to be produced by direct reaction of an oxidized DHA-PLs with proteins. We now propose studies of HOHA-lactone chemistry and transport through cell membranes and monolayers to evaluate the likelihood that its escape from DHA-rich membranes of photoreceptor rod cell disks can produce CEPs in locations remote from the site of membrane oxidation. This may contribute to the clinically significant elevated levels of CEPs we discovered in the blood of individuals with AMD and it may account for CEP generation in the blood of rats upon light-induced oxidative injury of their retinas. We will examine the possibility that HOHA-lactone can enter cells and generate CEP modifications of intracellular proteins that can bind with and activate intracellular receptors such as platelet TLR9. Studies of HOHA-lactone glutathione (GSH) Michael adduct biochemistry will test the hypotheses that this adduct can serve as a Trojan horse that transports a CEP precursor out of cells, and that in conjunction with ALD-catalyzed reduction, can prevent CEP formation. Inspired by the biological activities found previously for adducts of other oxidized lipids with GSH, e.g. leukotrienes, pilot studies were conducted with GSH adducts of HOHA-lactone that revealed that submicromolar concentrations of GSH-HOHA-lactone and the alcohol produced by reduction of this aldehyde stimulate proliferation and tube formation by HUVEC cells. New cell biological studies are proposed to investigate the effects of HOHA-lactone, its GSH adducts and the CEP modifications of proteins and ethanol-amine phospholipids derived from the HOHA-lactone on primary human RPE cells, bone marrow-derived macrophages, and primary choroidal endothelial cells, including studies on the signaling pathways leading to the biological effects. The potential utility of the mechanistic information to be gleaned from the in vitro and in vivo studies proposed is exemplified by new insights recently developed suggesting that immunosuppressive therapy might be effective for ameliorating the retinal damage of dry AMD caused by a CEP-induced T-cell promoted invasion of the retina by inflammatory macrophages and their CEP-potentiated activation.

Public Health Relevance

A new pathway for generating CEPs, protein and ethanolamine phospholipid modifications that contribute to the pathogenesis of both 'dry' and 'wet' age-related macular degeneration (AMD), will be studied. The ability of a reactive product of lipid oxidation, 'HOHA-lactone' to escape from cellular membranes in the retina and produce CEPs in locations remote from the site of membrane oxidation, including the blood, will be determined in a rat model of photooxidative injury. Investigations of the biological activities of HOHA-lactone, its interception by glutathione and the transformations and biological activities of the adducts will be extended, and the signaling pathways involved determined to provide a basis for the design of new therapeutic measures for the treatment of AMD.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY016813-10
Application #
9114118
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Shen, Grace L
Project Start
2005-08-01
Project End
2019-07-31
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
10
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Yakubenko, Valentin P; Cui, Kui; Ardell, Christopher L et al. (2018) Oxidative modifications of extracellular matrix promote the second wave of inflammation via ?2 integrins. Blood 132:78-88
Cheng, Yu-Shiuan; Linetsky, Mikhail; Gu, Xilin et al. (2018) Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res :
Linetsky, Mikhail; Bondelid, Karina S; Losovskiy, Sofiya et al. (2018) 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Is a Potent Inducer of the Complement Pathway in Human Retinal Pigmented Epithelial Cells. Chem Res Toxicol 31:666-679
Salomon, Robert G (2017) Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chem Res Toxicol 30:105-113
Wang, Hua; Linetsky, Mikhail; Guo, Junhong et al. (2016) Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells. Chem Res Toxicol 29:1198-210
Guo, Junhong; Linetsky, Mikhail; Yu, Annabelle O et al. (2016) 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways. Chem Res Toxicol 29:2125-2135
Bi, Wenzhao; Jang, Geeng-Fu; Zhang, Lei et al. (2016) Molecular Structures of Isolevuglandin-Protein Cross-Links. Chem Res Toxicol 29:1628-1640
Biswas, Sudipta; Xin, Liang; Panigrahi, Soumya et al. (2016) Novel phosphatidylethanolamine derivatives accumulate in circulation in hyperlipidemic ApoE-/- mice and activate platelets via TLR2. Blood 127:2618-29
Guo, Junhong; Hong, Li; West, Xiaoxia Z et al. (2016) Bioactive 4-Oxoheptanedioic Monoamide Derivatives of Proteins and Ethanolaminephospholipids: Products of Docosahexaenoate Oxidation. Chem Res Toxicol 29:1706-1719
Guo, Junhong; Wang, Hua; Hrinczenko, Borys et al. (2016) Efficient Quantitative Analysis of Carboxyalkylpyrrole Ethanolamine Phospholipids: Elevated Levels in Sickle Cell Disease Blood. Chem Res Toxicol 29:1187-97

Showing the most recent 10 out of 36 publications