Pseudoexfoliation syndrome is a common age-related disease of worldwide significance and is the most commonly identified specific cause of open-angle glaucoma. The disease initiating mechanisms of pseudoexfoliation syndrome are almost completely unknown. Currently, all therapeutic strategies for pseudoexfoliative glaucoma aim to lower IOP and there are no specific therapies aimed at treating pseudoexfoliation syndrome itself. With increased knowledge of the initiating mechanisms, it should be possible to devise improved therapeutic strategies that specifically target pseudoexfoliation syndrome itself, promoting earlier interventions and improved medical outcomes. Our long-term goal is to contribute to the development of improved human glaucoma therapies by utilizing synergistic genetic approaches with mice and humans. Here, we take advantage of a phenotype-driven screening approach among mouse coat color variants that has identified a new mouse model of eye disease that strongly resembles aspects of pseudoexfoliation syndrome. Our objective in this proposal is to capitalize on this resource by initiating mechanistic studies and completing a phenotypic characterization of the strain. Using genetic approaches in mice, we are testing the hypothesis that susceptibility of the eye toward PEX syndrome is mediated via a mechanism influencing cellular morphology and oxidative stress associated with melanogenesis. Suspecting that the same mechanism likely underlies human PEX syndrome, we are simultaneously conducting human genetic association studies. Completion of these studies will not only identify PEX syndrome-related genetic pathways, but will also develop an animal model needed for development and testing of future therapeutic strategies. In the long-term, these experiments will contribute to a better understanding of glaucoma, and ultimately, to improved human therapies. Pseudoexfoliation syndrome is a common age-related disease of worldwide significance and is the most commonly identified specific cause of open-angle glaucoma. Here, we take advantage of a newly identified mouse model that strongly resembles aspects of pseudoexfoliation syndrome. Our objective in this proposal is to test the genetic pathways contributing to phenotypes of this mouse strain and test the significance of these genes among human pseudoexfoliation patients.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY017673-05
Application #
8230755
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Chin, Hemin R
Project Start
2008-04-01
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2014-02-28
Support Year
5
Fiscal Year
2012
Total Cost
$370,287
Indirect Cost
$122,162
Name
University of Iowa
Department
Physiology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Gorniak, Thomas; Haraszti, Tamás; Suhonen, Heikki et al. (2014) Support and challenges to the melanosomal casing model based on nanoscale distribution of metals within iris melanosomes detected by X-ray fluorescence analysis. Pigment Cell Melanoma Res 27:831-4
Gorniak, Thomas; Haraszti, Tamas; Garamus, Vasyl M et al. (2014) Nano-scale morphology of melanosomes revealed by small-angle X-ray scattering. PLoS One 9:e90884
John, Simon W M; Harder, Jeffrey M; Fingert, John H et al. (2014) Animal models of exfoliation syndrome, now and future. J Glaucoma 23:S68-72
Fingert, John H; Burden, James H; Wang, Kai et al. (2013) Circumferential iris transillumination defects in exfoliation syndrome. J Glaucoma 22:555-8
Zode, Gulab S; Bugge, Kevin E; Mohan, Kabhilan et al. (2012) Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Invest Ophthalmol Vis Sci 53:1557-65
Mao, Mao; Solivan-Timpe, Frances; Roos, Ben R et al. (2012) Localization of SH3PXD2B in human eyes and detection of rare variants in patients with anterior segment diseases and glaucoma. Mol Vis 18:705-13
Howell, Gareth R; Soto, Ileana; Zhu, Xianjun et al. (2012) Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest 122:1246-61
Stauss, Harald M; Rarick, Kevin R; Leick, Katie M et al. (2011) Noninvasive assessment of vascular structure and function in conscious rats based on in vivo imaging of the albino iris. Am J Physiol Regul Integr Comp Physiol 300:R1333-43
Trantow, Colleen M; Cuffy, Tryphena L; Fingert, John H et al. (2011) Microarray analysis of iris gene expression in mice with mutations influencing pigmentation. Invest Ophthalmol Vis Sci 52:237-48
Haraszti, Tamas; Trantow, Colleen M; Hedberg-Buenz, Adam et al. (2011) Spectral analysis by XANES reveals that GPNMB influences the chemical composition of intact melanosomes. Pigment Cell Melanoma Res 24:187-96

Showing the most recent 10 out of 13 publications