Retinal vascular diseases represent some of the most significant causes of visual loss in the United States, and include diabetic retinopathy, retinopathy of prematurity, and the neovascular subtype of age-related macular degeneration. The retinal vasculature is directly observable through the ophthalmoscope, and, as a consequence, there is a large body of data on its appearance in the context of ocular disease. The signaling systems that control retinal vascular development and that participate in the pathobiology of retinal vascular disease are the subject of intense interest. One such signaling system is the Norrin-Frizzled4 ligand-receptor system. In humans and mice, mutations in the genes encoding either the ligand Norrin, the receptor Frizzled4, or the coreceptor Lrp5 cause pathologic hypovascularization of the retina, with compensatory neovascularization. The present application proposes to address the following fundamental questions related to this signaling system. (1) Which cells are responsible for producing Norrin and which cells use Frizzled4 to respond to Norrin? (2) Are there Norrin receptors in addition to Frizzled4? (3) If, as seems likely, Norrin acts directly on endothelial cells, does it promote proliferation, direct cell motility, or induce other responses? (4) Is the Norrin-Frizzled4 signaling system active in the adult retina, and can it modify the natural history or severity of mouse models of retinopathy of prematurity or choroidal neovascularization? (5) What is the structural basis for Norrin's ability to distinguish Frizzled4 from the other nine mammalian Frizzleds? (6) How does Norrin activate conformational alterations in Frizzled4 and its co-receptor Lrp5? Answers to these questions will shed light on the role of Norrin-Frizzled4 signaling in the context of normal and pathologic retinal vascular biology.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Shen, Grace L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Chang, Hao; Smallwood, Philip M; Williams, John et al. (2016) The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation. Dev Biol 409:181-93
Wang, Yanshu; Chang, Hao; Rattner, Amir et al. (2016) Frizzled Receptors in Development and Disease. Curr Top Dev Biol 117:113-39
Vanhollebeke, Benoit; Stone, Oliver A; Bostaille, Naguissa et al. (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. Elife 4:
Zhou, Yulian; Wang, Yanshu; Tischfield, Max et al. (2014) Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124:3825-46
Rattner, Amir; Wang, Yanshu; Zhou, Yulian et al. (2014) The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling. Invest Ophthalmol Vis Sci 55:8614-25
Wu, Hao; Luo, Junjie; Yu, Huimin et al. (2014) Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81:103-19
Zhou, Yulian; Nathans, Jeremy (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31:248-56
Rattner, Amir; Yu, Huimin; Williams, John et al. (2013) Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis. Proc Natl Acad Sci U S A 110:E3830-9
Wang, Yanshu; Rattner, Amir; Zhou, Yulian et al. (2012) Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151:1332-44
Ye, Xin; Wang, Yanshu; Nathans, Jeremy (2010) The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 16:417-25

Showing the most recent 10 out of 12 publications