This Phase-II proposal seeks to elucidate the structure-function relationships between visual field threshold sensitivity and the structural features of the retinal layers, the optic nerve head, and the connecting nerve fiber bundles in glaucoma. This proposal extends our successful Phase-I research that established structure- structure relationships among retinal quantitative indices. In this Phase II, further advancements of spectral domain optical coherence tomography (SD OCT) image analysis will yield new damage metrics expected to correspond much better with visual field threshold sensitivity. The project is driven by an important clinical problem - the poor reliability and reproducibility of th visual field as a measure of irreversible damage to the retinal ganglion cells and their axons in glaucoma. Our long-term vision remains to determine/predict glaucoma visual function from objective structure measurements by OCT. Once achieved, this new approach will provide an objective and reproducible measure, complementing subjective functional assessment of glaucoma damage, decrease the need for frequent visual field testing resulting from long-term fluctuation of visual response, and improve glaucoma treatment based on reliable progression markers. Specifically, we will develop predictive models of increasing complexity yielding a patient- specific predictive model of glaucomatous damage. The overriding hypothesis motivating the proposed research is that novel quantitative metrics of the entire retinal ganglion cell-axonal complex morphology utilizing the nerve fiber bundle trajectories allow reliable prediction of visual function. We have identified the following specific aims:
Aim 1 : Establish a baseline for the focal structural-functional correlation in the retina covered by the Humphrey 24-2 perimetry test (24 degree radius visual field) by comparing 24-2 thresholds with their corresponding structural indices derived from registered multi-field SD-OCT scans in glaucoma and normal subjects. Derive a baseline predictive model of function from structural properties of the inner retinal layers, comprised of retinal ganglion cell and nerve fiber layers.
Aim 2 : Demonstrate that incorporating structural parameters along SD-OCT atlas-based retinal ganglion cell- axonal complex (RGC-AC) trajectories improves the performance of the predictive structure-function model.
Aim 3 : Evaluate whether prediction of 24-2 thresholds is improved by deriving individual-based RGC-AC trajectories instead of from an RGC-AC atlas. The proposed work will be performed using 7-field per eye 3D SD-OCT images accompanied by 24-2 visual field test data on the same day from 100 patients with glaucoma and 40 age-matched normal subjects.

Public Health Relevance

Three dimensional spectral OCT imaging provides a wealth of information about the morphology and tissue characteristics of retinal layers. We propose to study structural and functional relationships of the retina layers using multi-field 3-D OCT imaging. This study has potentially important consequences for glaucoma and other retinal disease diagnosis and treatment.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (NOIT)
Program Officer
Chin, Hemin R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Engineering (All Types)
Schools of Engineering
Iowa City
United States
Zip Code
Choi, Catherine S; Zhang, Li; Abràmoff, Michael D et al. (2016) Evaluating Efficacy of Aflibercept in Refractory Exudative Age-Related Macular Degeneration With OCT Segmentation Volumetric Analysis. Ophthalmic Surg Lasers Imaging Retina 47:245-51
Lee, Kyungmoo; Buitendijk, Gabriëlle H S; Bogunovic, Hrvoje et al. (2016) Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images. Transl Vis Sci Technol 5:14
Kupersmith, Mark J; Garvin, Mona K; Wang, Jui-Kai et al. (2016) Retinal ganglion cell layer thinning within one month of presentation for optic neuritis. Mult Scler 22:641-8
Zarei, Kasra; Scheetz, Todd E; Christopher, Mark et al. (2016) Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ. Sci Rep 6:26559
Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua et al. (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A 113:E2655-64
Miri, Mohammad Saleh; Robles, Victor A; Abràmoff, Michael D et al. (2016) Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes. Comput Med Imaging Graph :
Christopher, Mark; Abràmoff, Michael D; Tang, Li et al. (2015) Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension. Invest Ophthalmol Vis Sci 56:4470-9
Bogunović, Hrvoje; Kwon, Young H; Rashid, Adnan et al. (2015) Relationships of retinal structure and humphrey 24-2 visual field thresholds in patients with glaucoma. Invest Ophthalmol Vis Sci 56:259-71
Chen, John J; Thurtell, Matthew J; Longmuir, Reid A et al. (2015) Causes and Prognosis of Visual Acuity Loss at the Time of Initial Presentation in Idiopathic Intracranial Hypertension. Invest Ophthalmol Vis Sci 56:3850-9
Zhang, Li; Buitendijk, Gabriëlle H S; Lee, Kyungmoo et al. (2015) Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT. Invest Ophthalmol Vis Sci 56:3202-11

Showing the most recent 10 out of 57 publications