The functional properties of sensory cortical neurons, as reflected in their response selectivity to stimulus attributes, are primarily determined by the spatiotemporal integration of sensory-evoked excitatory and inhibitory synaptic inputs to the cell. The objective of this project is to provide an understanding of excitatory and inhibitory synaptic mechanisms underlying the cortical cells' functional properties. The role of synaptic inhibition in shaping visual cortical processing has remained controversial. In addition, due to the difficulties in identifying and targeting cortical inhibitory neurons in vivo, the receptive field (RF) properties of these neurons, which are crucial to the function of synaptic inhibition, remain largely elusive. We propose to combine the in vivo whole-cell recording and two-photon imaging techniques, and exploit mouse genetic models, to determine the response properties of excitatory and inhibitory inputs in visual cortical neurons.
In Aim 1, using """"""""blind"""""""" whole-cell voltage-clamp recording coupled with histology, we will dissect the excitatory and inhibitory synaptic conductances of cortical excitatory neurons evoked by sparse flash stimuli. We will determine how simple and complex receptive field structures are determined by the spatial distribution of synaptic inputs. By reconstituting the membrane potential changes that result from these synaptic inputs, we will test the hypothesis that inhibitory inputs play a crucial role in sharpening the spatial discreteness of spike On and Off receptive fields.
In Aim 2, we will perform two-photon imaging guided loose patch recording in a transgenic mouse line where inhibitory neurons are labeled with green fluorescence protein. We will examine visually evoked spike responses of both fluorescent inhibitory neurons and non-fluorescent excitatory neurons, and test the hypothesis that there are functional differences between these two groups of neurons, i.e. inhibitory neurons are less selective to stimulus attributes such as spatial phase and orientation.
In Aim 3, by applying imaging guided whole-cell current-clamp and voltage-clamp recordings, we will test the hypothesis that the functional differences between excitatory and inhibitory neurons can be attributed to the difference in the strength of synaptic inputs they receive, rather than in the structure of synaptic input circuitry. These studies will provide novel insights into functional cortical circuitry.

Public Health Relevance

In the central nervous system inhibitory synaptic inputs control the gain of network activity and play a critical role in information processing. Abnormality in synaptic inhibition has been implicated in several cognitive disorders and age-related reduction in perceptual functions. The proposed project will advance our understanding of the role of inhibitory circuits in visual processing, and may provide important insights into how functional changes of inhibitory neurons can lead to deterioration of cognitive functions. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY019049-01
Application #
7507311
Study Section
Central Visual Processing Study Section (CVP)
Program Officer
Oberdorfer, Michael
Project Start
2008-09-30
Project End
2012-08-31
Budget Start
2008-09-30
Budget End
2009-08-31
Support Year
1
Fiscal Year
2008
Total Cost
$404,727
Indirect Cost
Name
University of Southern California
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Li, Ya-Tang; Fang, Qi; Zhang, Li I et al. (2018) Spatial Asymmetry and Short-Term Suppression Underlie Direction Selectivity of Synaptic Excitation in the Mouse Visual Cortex. Cereb Cortex 28:2059-2070
Zingg, Brian; Dong, Hong-Wei; Tao, Huizhong Whit et al. (2018) Input-output organization of the mouse claustrum. J Comp Neurol 526:2428-2443
Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian et al. (2018) A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning. Neuron 97:406-417.e4
Zhang, Guang-Wei; Shen, Li; Zhong, Wen et al. (2018) Transforming Sensory Cues into Aversive Emotion via Septal-Habenular Pathway. Neuron 99:1016-1028.e5
Chou, Xiao-Lin; Wang, Xiyue; Zhang, Zheng-Gang et al. (2018) Inhibitory gain modulation of defense behaviors by zona incerta. Nat Commun 9:1151
Fang, Qi; Tao, Huizhong W (2017) Direction selectivity starts early. Nat Neurosci 20:899-901
Zingg, Brian; Chou, Xiao-Lin; Zhang, Zheng-Gang et al. (2017) AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron 93:33-47
Chen, Guang; Zhang, Yuan; Li, Xiang et al. (2017) Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations. Neuron 96:1403-1418.e6
Tao, Can; Zhang, Guangwei; Zhou, Chang et al. (2017) Diversity in Excitation-Inhibition Mismatch Underlies Local Functional Heterogeneity in the Rat Auditory Cortex. Cell Rep 19:521-531
Ji, Xu-Ying; Zingg, Brian; Mesik, Lukas et al. (2016) Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex 26:2612-25

Showing the most recent 10 out of 47 publications