The macrophage is a key component of the innate arm of immunity and is critical in regulating initial immune response to tumors, infections and in inflammation. The macrophage is also a central player in sustaining immune privilege in the eye. Immunosenescence is characterized by age-related changes in both the innate and adaptive compartments of the immune system. Innate immunity, specifically macrophage function, has received particular attention in the eye as it can modulate developmental and post-developmental angiogenesis. Ocular neovascularization plays a central role in visual impairment and blindness in several disease states of the eye, including age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, and intraocular tumors. The work described in this proposal will help elucidate the mechanisms by which senescence induces a functional drift in macrophages towards a deleterious pro-angiogenic phenotype. Our studies will also test how altering macrophage polarization determines angiogenic fate in the eye. These questions are especially relevant to the importance of macrophages in AMD. These goals will be accomplished by: a) Quantifying age-related changes in IL-10 activated signaling pathways in macrophages that lead to loss of anti-angiogenic function and b) Demonstrating that abnormal processing of cholesterol, a dominant component of drusen, causes old macrophages to become pro- angiogenic.

Public Health Relevance

Immune cells and cytokines secreted by immune cells, specifically macrophages, are emerging as central players in regulating eye diseases associated with abnormal blood vessel growth. These include age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy. We aim to understand the mechanisms by which macrophage dysfunction promotes disease progression and hope to provide new insights in order to design future therapies to prevent blindness from these diseases.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Mckie, George Ann
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Oladipupo, Sunday S; Smith, Craig; Santeford, Andrea et al. (2014) Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc Natl Acad Sci U S A 111:13379-84
Sene, Abdoulaye; Apte, Rajendra S (2014) Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 25:107-14
Silberman, Dafne M; Ross, Kenneth; Sande, Pablo H et al. (2014) SIRT6 is required for normal retinal function. PLoS One 9:e98831
Cruz-Guilloty, Fernando; Saeed, Ali M; Echegaray, Jose J et al. (2013) Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration. Int J Inflam 2013:503725
Sene, Abdoulaye; Khan, Aslam A; Cox, Douglas et al. (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17:549-61
Zhao, Hui; Roychoudhury, Jayeeta; Doggett, Teresa A et al. (2013) Age-dependent changes in FasL (CD95L) modulate macrophage function in a model of age-related macular degeneration. Invest Ophthalmol Vis Sci 54:5321-31
Schimel, Andrew M; Abraham, Linu; Cox, Douglas et al. (2011) N-acetylcysteine amide (NACA) prevents retinal degeneration by up-regulating reduced glutathione production and reversing lipid peroxidation. Am J Pathol 178:2032-43