One of the most fundamental problems in molecular neuroscience and cell biology is the proper assembly of signal-transducing membranes including the transport and sorting of protein components. A major cause of neurodegenerative and other inherited disorders is the improper localization of receptors and other signaling or transport proteins. The goal of this study is to identify proteins that interact with rhodopsin during transport and those involved in the biogenesis of disk membranes in the outer segment of rod cells, and then determine the molecular mechanisms by which the molecular interactions of rhodopsin with other proteins lead to formation of healthy photoreceptor disk membranes. This work will further the understanding of the mechanisms of neurodegenerative disorders caused by improper trafficking of receptors and other membrane proteins. The focus of the proposed research is to understand protein-protein interactions that are defective when rhodopsin lacks the proper structure at its carboxy-terminus, as is the case in several of the most severe forms of autosomal dominant retinitis pigmentosa. We will use powerful mouse knock-in models that my co-workers and I have developed, as well as new models proposed herein.
In Aim 1, we will identify proteins that interact with rhodopsin's carboxy-terminus to mediate proper transport and disk membrane assembly through affinity-capture experiments using retinal extracts from homozygote rhodopsin mutants with defective carboxyl-termini knock-in animals.
In Aim 2, we will characterize, first in vitro, then in vivo, a mutant rhodopsin, Ter349Glu, containing a carboxyl-terminal extension that causes one of the most severe forms of rhodopsin-mediated autosomal dominant retinitis pigmentosa.
In Aim 3, we will develop a new tool, human rhodopsin fused to photoactivatable green fluorescent protein that is followed by a repeat of rhodopsin's carboxyl terminus (rho-paGFP- 1D4). This construct will be used in two distinct ways: first, we will test the hypothesis that an unobstructed rhodopsin carboxy-terminus is sufficient to form proper outer segments in healthy rods in knock-in animals. Second, we will study the role of specific protein-protein interactions in rhodopsin trafficking after photoactivation of GFP, enabling us to track the movement of subpopulations of rhodopsin in cells for the first time. This sets the stage for in vivo trafficking studies in the future. Project Narrative The focus of this study is to understand protein-protein interactions that are defective when the dim light photoreceptor rhodopsin lacks the proper structure at its carboxy- terminus, as is the case in several of the most severe forms of autosomal dominant retinitis pigmentosa. We will study the role of rhodopsin in proper rod cell formation and degeneration, and monitor its trafficking to better understand these processes.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Neuhold, Lisa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Alabama Birmingham
Schools of Optometry/Ophthalmol
United States
Zip Code
Reish, Nicholas J; Boitet, Evan R; Bales, Katie L et al. (2014) Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin. J Neurosci 34:14854-63
Sandoval, Ivette M; Price, Brandee A; Gross, Alecia K et al. (2014) Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice. PLoS One 9:e108135
Hollingsworth, T J; Gross, Alecia K (2013) The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death. J Biol Chem 288:29047-55
Reish, Nicholas J; Maltare, Astha; McKeown, Alex S et al. (2013) The age-regulating protein klotho is vital to sustain retinal function. Invest Ophthalmol Vis Sci 54:6675-85
Sammons, Joshua D; Gross, Alecia K (2013) Biochemical analysis of a rhodopsin photoactivatable GFP fusion as a model of G-protein coupled receptor transport. Vision Res 93:43-8
Budzynski, Ewa; Gross, Alecia K; McAlear, Suzanne D et al. (2010) Mutations of the opsin gene (Y102H and I307N) lead to light-induced degeneration of photoreceptors and constitutive activation of phototransduction in mice. J Biol Chem 285:14521-33