Clinical trials demonstrate that significant, sustained intraocular pressure (IOP) reduction in people with glaucoma is neuroprotective, slowing or halting vision loss, even in patients with normal-tension glaucoma. While the etiology of ocular hypertension in glaucoma is known to reside in the conventional outflow pathway, the cellular mechanisms responsible for generation of extra outflow resistance remain unknown. Yet, it seems likely that the homeostatic mechanisms regulating IOP, which presumably become defective in ocular hypertension, are similar to those involved in regulating blood pressure, including those affecting vascular tone. A key molecule is nitric oxide (NO), a free radical that is produced by vascular endothelia and acts as a potent vasodilator and inhibitor of contractility. Importantly, NO production by endothelia is regulated by shear stress. We demonstrated in our first funding period that IOP strongly influences the magnitude of shear stress within Schlemm's canal (SC), triggering release of NO from SC cells. We also showed that NO relaxes trabecular meshwork cells to decrease outflow resistance. Thus, shear-induced NO release acts within a dynamic ?feedback loop? that regulates conventional outflow resistance and IOP and appears compromised in some glaucomatous individuals. Our central hypothesis is that NO released from SC cells provides a mechanosensitive feedback signal that maintains IOP homeostasis, thereby functioning as an intraocular ?barostat?; and that directed therapeutic modulation of NO signaling in the glaucomatous outflow pathway significantly lowers IOP. During the first funding period, we discovered that additional factors, including oscillatory shear stress and trabecular meshwork (TM) stiffness, modulate the shear stress acting on SC cells, and hence influence their NO production. We also identified an additional NO target (distal vascular tone) in the conventional tract that lowers total outflow resistance. As a result, we extend our examination of NO signaling in the conventional outflow tract to test effects of oscillatory shear stress and TM stiffness on NO production and outflow resistance (Aim 1). Moreover, since 25-50% of total outflow resistance resides downstream of SC in distal vessels that are partly surrounded by NO-sensitive smooth muscle cells, we will determine the role of NO in regulating outflow resistance in the collector channels and intrascleral venous vessels in Aim 2. Knowing that NO is labile and needs close access to resistance generating regions in the conventional outflow tract, Aim 3 is designed to develop targeted NO- based therapeutics that increase conventional outflow at the level of the juxtacanalicular tissue, SC and/or distal vessels. This is critical because non-targeted NO delivery to the anterior segment is likely counter- productive by increasing episcleral venous pressure or relaxing ciliary muscle, both of which increase IOP. Our results will define the mechanisms of NO-mediated homeostasis in outflow regulation, uncover therapeutic targets for glaucoma therapy and generate novel technologies to modulate NO signaling and IOP.

Public Health Relevance

Glaucoma is treatable. Data from large clinical trials demonstrate that lowering intraocular pressure in people with glaucoma (whether elevated or not) is neuroprotective; effectively slowing or stopping vision loss. Unfortunately, current medical therapies do not lower intraocular pressure sufficiently in most people, likely because they do not target the conventional outflow pathway that is diseased and causes pressure elevation in glaucoma. The present project extends our investigation of a pressure-sensitive feedback loop involving nitric oxide that regulates outflow resistance through the conventional pathway, which is the chief determinant of intraocular pressure. The proposed studies are geared towards identifying and testing therapies for targeted delivery of nitric oxide within the conventional outflow pathway to more successfully lower intraocular pressure in glaucoma patients.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY022359-08
Application #
9749159
Study Section
Diseases and Pathophysiology of the Visual System Study Section (DPVS)
Program Officer
Liberman, Ellen S
Project Start
2012-04-01
Project End
2021-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Duke University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Wang, Ke; Li, Guorong; Read, A Thomas et al. (2018) The relationship between outflow resistance and trabecular meshwork stiffness in mice. Sci Rep 8:5848
McDonnell, Fiona; Dismuke, W Michael; Overby, Darryl R et al. (2018) Pharmacological regulation of outflow resistance distal to Schlemm's canal. Am J Physiol Cell Physiol 315:C44-C51
Roy Chowdhury, Uttio; Rinkoski, Tommy A; Bahler, Cindy K et al. (2017) Effect of Cromakalim Prodrug 1 (CKLP1) on Aqueous Humor Dynamics and Feasibility of Combination Therapy With Existing Ocular Hypotensive Agents. Invest Ophthalmol Vis Sci 58:5731-5742
Chandrawati, Rona; Chang, Jason Y H; Reina-Torres, Ester et al. (2017) Localized and Controlled Delivery of Nitric Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis: Toward Therapy for Glaucoma. Adv Mater 29:
Madekurozwa, Michael; Reina-Torres, Ester; Overby, Darryl R et al. (2017) Direct measurement of pressure-independent aqueous humour flow using iPerfusion. Exp Eye Res 162:129-138
O'Callaghan, Jeffrey; Crosbie, Darragh E; Cassidy, Paul S et al. (2017) Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma. Hum Mol Genet 26:1230-1246
Klingeborn, Mikael; Dismuke, W Michael; Skiba, Nikolai P et al. (2017) Directional Exosome Proteomes Reflect Polarity-Specific Functions in Retinal Pigmented Epithelium Monolayers. Sci Rep 7:4901
Muenster, Stefan; Lieb, Wolfgang S; Fabry, Gregor et al. (2017) The Ability of Nitric Oxide to Lower Intraocular Pressure Is Dependent on Guanylyl Cyclase. Invest Ophthalmol Vis Sci 58:4826-4835
Tam, Lawrence C S; Reina-Torres, Ester; Sherwood, Joseph M et al. (2017) Enhancement of Outflow Facility in the Murine Eye by Targeting Selected Tight-Junctions of Schlemm's Canal Endothelia. Sci Rep 7:40717
Klingeborn, Mikael; Dismuke, W Michael; Bowes Rickman, Catherine et al. (2017) Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res 59:158-177

Showing the most recent 10 out of 39 publications