Visual perception is mediated by complex interactions amongst neurons in the retina, visual cortex, and subcortical brain structures. The importance of vision to humans and other primates is reflected in the enormous percentage of cerebral cortex devoted to processing visual information. Thus, deficits in visual processing are particularly debilitating and arise from abnormalities not only in the eye, but also in cortical circuitry. For example, strabismus or amblyopia during childhood can have long-lasting effects on the cortical circuits that process visual information. There is also evidence that some forms of dyslexia result from central visual system abnormalities. The function of the nervous system is dependent on complex interactions between networks of neurons composed of multiple neuron types. The proposed studies are aimed at revealing the organization and function of mouse visual cortical areas. Such studies will provide a crucial framework for detailed functional investigations of visual cortical circuits using novel genetic, viral and transgenic approaches tha have been developed at the cutting edge of neuroscience over the last several years. Because these tools are most powerful in mice and many basic principles of the organization and function of cortical circuits are conserved from mice to humans, development of the mouse system represents in extremely important direction for future studies. The 3 aims will reveal: the visual receptive field properties of neurons in each of nine mouse extrastriate visual areas;the functional properties of V1 neurons that project to extrastriate visual areas;and the connections between extrastriate visual areas and to subcortical structures.

Public Health Relevance

Understanding the detailed organization and function of visual cortical areas and their underlying circuits is necessary to obtain a mechanistic understanding of visual processing and also contributes more generally to understanding circuit mechanisms across all of the cerebral cortex. Deficits in central visual processing are linked to strabismus, amblyopia and dyslexia. More generally, understanding circuit mechanisms that underlie cortical function also has important implications for diseases such as schizophrenia and autism, where impairments in the function of cortical circuits is implicated.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY022577-02
Application #
8461949
Study Section
Special Emphasis Panel (ZRG1-IFCN-L (02))
Program Officer
Steinmetz, Michael A
Project Start
2012-05-01
Project End
2017-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
2
Fiscal Year
2013
Total Cost
$530,628
Indirect Cost
$254,259
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Cetin, Ali; Callaway, Edward M (2014) Optical control of retrogradely infected neurons using drug-regulated "TLoop" lentiviral vectors. J Neurophysiol 111:2150-9
Garrett, Marina E; Nauhaus, Ian; Marshel, James H et al. (2014) Topography and areal organization of mouse visual cortex. J Neurosci 34:12587-600
Cruz-Martín, Alberto; El-Danaf, Rana N; Osakada, Fumitaka et al. (2014) A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358-61
Nienborg, Hendrikje; Hasenstaub, Andrea; Nauhaus, Ian et al. (2013) Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J Neurosci 33:11145-54
Osakada, Fumitaka; Callaway, Edward M (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8:1583-601