The Hippo tumor suppressor pathway plays a crucial role in regulating organ size by inhibiting cell proliferation and promoting apoptosis, and limitin stem/progenitor cell self- renewal and expansion. The YAP/TAZ transcription co-activators are the major downstream effectors of the Hippo pathway. Despite extensive studies, upstream signals regulating the Hippo pathway are unknown. Currently, no extracellular ligand or cell surface receptor has been identified to regulate the mammalian Hippo-YAP. Our preliminary studies have discovered that lysophosphatidic acid (LPA) and sphingosine 1- phosphophate (S1P) are important signaling molecules that regulating the Hippo pathway. LPA and S1P act through their respective G-protein coupled receptors (GPCRs) to activate YAP. Both LPA and S1P have been implicated in cancer development and metastasis. Notably, activating mutations of Gq/11 are frequently found (83%) in uveal melanoma, which is the most common intraocular tumor in the eye with strong propensity of metastasis into the liver. Our preliminary study showed that active Gq/11 potently stimulates YAP activity. The major goals of this proposal are to investigate the mechanism of Hippo-YAP regulation by GPCR and to determine the functional significance of YAP/TAZ activation in the biology of LPA, S1P and other extracellular signals. Moreover, we will investigate the pathophysiological function of YAP/TAZ activation in the development of uveal melanoma and aim to provide scientific basis for treatment of this disease.

Public Health Relevance

The Hippo signaling pathway plays a major role in organ size regulation by controlling cell number and has also been implicated in human cancer. Preliminary studies from the PI's laboratory have identified the first extracellular signals and cell surface receptors that regulate the Hippo pathway, and suggested a critical role of the Hippo pathway in uveal melanoma, which is the most common intraocular tumor in the eye. The goal of this proposal is to gain knowledge of Hippo-YAP pathway regulation and its role in uveal melanoma development.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY022611-04
Application #
8927641
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Neuhold, Lisa
Project Start
2012-09-01
Project End
2016-08-31
Budget Start
2015-09-30
Budget End
2016-08-31
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Pharmacology
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Zhang, Qian; Meng, Fansen; Chen, Shasha et al. (2017) Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat Cell Biol 19:362-374
Meng, Zhipeng; Moroishi, Toshiro; Guan, Kun-Liang (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1-17
Han, X-R; Zha, Z; Yuan, H-X et al. (2016) KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene 35:4179-90
Zha, Zhengyu; Han, Xiao-Ran; Smith, Matthew D et al. (2016) Hypertension-associated C825T polymorphism impairs the function of G?3 to target GRK2 ubiquitination. Cell Discov 2:16005
Moroishi, Toshiro; Hayashi, Tomoko; Pan, Wei-Wei et al. (2016) The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell 167:1525-1539.e17
Plouffe, Steven W; Hong, Audrey W; Guan, Kun-Liang (2015) Disease implications of the Hippo/YAP pathway. Trends Mol Med 21:212-22
Park, Hyun Woo; Kim, Young Chul; Yu, Bo et al. (2015) Alternative Wnt Signaling Activates YAP/TAZ. Cell 162:780-94
Zha, Zhengyu; Han, Xiaoran; Smith, Matthew D et al. (2015) A Non-Canonical Function of G? as a Subunit of E3 Ligase in Targeting GRK2 Ubiquitylation. Mol Cell 58:794-803
Taniguchi, Koji; Wu, Li-Wha; Grivennikov, Sergei I et al. (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519:57-62
Moroishi, Toshiro; Park, Hyun Woo; Qin, Baodong et al. (2015) A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev 29:1271-84

Showing the most recent 10 out of 31 publications