The cornea is the most densely innervated tissue in humans. Peripheral corneal nerves regenerate follow injury. Our hypothesis is that VEGF is a critical determinant of corneal nerve regeneration after injury and that the signaling pathways which mediate neurogenesis are distinct from those which mediate angiogenesis.
Aim 1 will characterize the mechanisms by which VEGF ligands mediate corneal nerve repair in vitro and in vivo.
Aim 2 characterizes the ability of VEGF ligands to mediate repair in animal models of corneal injury.

Public Health Relevance

Proper regeneration of corneal nerves after injury is needed to prevent the development of potentially blinding neurotrophic keratitis. This proposal will investigate a new role in corneal nerve regeneration for the well characterized VEGF signaling pathway in order to develop new techniques for promoting corneal repair.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY027912-01
Application #
9291652
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Araj, Houmam H
Project Start
2017-05-01
Project End
2021-04-30
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Zhong, Wei; Montana, Mario; Santosa, Samuel M et al. (2018) Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Surv Ophthalmol 63:453-479
Yamakawa, Michael; Doh, Susan J; Santosa, Samuel M et al. (2018) Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 38:1769-1798
Zhang, Min; Zhou, Qiang; Luo, Yuncin et al. (2018) Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development. PLoS One 13:e0191962
Zhong, Wei; Gao, Xinbo; Wang, Shuangyong et al. (2017) Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 20:581-598