To understand and control disease, it is critical to focus on proteins. Proteins consist of their peptide backbone with post-translational modifications (PTMs), the latter of which control the function of the protein. The goal of this research continues to be the development of tools to comprehensively characterize proteins immunoextracted from cells, tissues, or biological matrices at the fmole level. We propose to develop a general platform involving LC/MS and CE-LIF-MS for full glycosylation characterization, including glycan linkage and position isomers at individual sites of multisite glycosylated proteins. All forms on specific sites above the ~10% level will be quantitated. With this information, we will then focus on trace quantitation of multiple forms on multiple sites by multiple reaction monitoring (MRM) LC/MS using our highly sensitive 10 5m i.d. porous layer open tubular (PLOT) LC columns. As a demonstration of the power of the technology, we will immunoprecipitate glycoproteins from small volumes of plasma, and quantitate a number of specific glycoforms on specific sites of healthy individuals and those with breast cancer and other diseases. This technology will allow us to monitor the variation in glycan structures and the relative levels of individual forms on specific sites of glycoproteins for disease vs. control, as well glycan variability within each cohort. A second demonstration will involve full determination of the extracellular domain of the important receptor tyrosine kinases - EGFR and Her2. We will conduct a variety of studies with cell lines for EGFR alone and EGFR/Her2, comprehensively characterizing glycosylation and the dynamics of phosphorylation as a function of stimulation. These results will be compared to those obtained when hypoxia conditions (low oxygen levels) are used for cell growth, as would occur in tissue. Finally, we will demonstrate comprehsive characterization of EGFR extracted from mouse and human tissue. The research will result in powerful new tools to allow a deeper understanding of biological processes and disease.

Public Health Relevance

To understand disease, it is essential that critical target proteins be comprehensively characterized in terms of their peptide backbone structure and post-translational modifications (PTMs). The PTMs control the biological functions of the proteins. We will develop the tools, using LC/MS and CE-LIF-MS, to allow detailed characterization at extent and sensitivity levels not yet possible. Target proteins will be those that are available for therapeutic intervention as well as potential biomarkers of disease. The research will provide powerful tools to help elucidate diseases such as cancer.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Enabling Bioanalytical and Biophysical Technologies Study Section (EBT)
Program Officer
Edmonds, Charles G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northeastern University
Organized Research Units
United States
Zip Code
Laviolette, Laura A; Wilson, Jonas; Koller, Julia et al. (2013) Human folliculin delays cell cycle progression through late S and G2/M-phases: effect of phosphorylation and tumor associated mutations. PLoS One 8:e66775
Ni, Wenqin; Lin, Melanie; Salinas, Paul et al. (2013) Complete mapping of a cystine knot and nested disulfides of recombinant human arylsulfatase A by multi-enzyme digestion and LC-MS analysis using CID and ETD. J Am Soc Mass Spectrom 24:125-33
Dai, Shujia; Ni, Wenqin; Patananan, Alexander N et al. (2013) Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Anal Chem 85:2423-30
Ni, Wenqin; Bones, Jonathan; Karger, Barry L (2013) In-depth characterization of N-linked oligosaccharides using fluoride-mediated negative ion microfluidic chip LC-MS. Anal Chem 85:3127-35
Tummala, Seshu; Titus, Michael; Wilson, Lee et al. (2013) Evaluation of exogenous siRNA addition as a metabolic engineering tool for modifying biopharmaceuticals. Biotechnol Prog 29:415-24
Rafalko, Agnes; Dai, Shujia; Hancock, William S et al. (2012) Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma. J Proteome Res 11:808-17
Szabo, Zoltan; Guttman, Andras; Bones, Jonathan et al. (2011) Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis. Anal Chem 83:5329-36
Bones, Jonathan; McLoughlin, Niaobh; Hilliard, Mark et al. (2011) 2D-LC analysis of BRP 3 erythropoietin N-glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long poly-N-acetyl lactosamine extensions. Anal Chem 83:4154-62
Wang, Zhouxi; Rejtar, Tomas; Zhou, Zhaohui Sunny et al. (2010) Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun Mass Spectrom 24:267-75
Lazarev, Alexander V; Rejtar, Tomas; Dai, Shujia et al. (2009) Centrifugal methods and devices for rapid in-gel digestion of proteins. Electrophoresis 30:966-73

Showing the most recent 10 out of 20 publications