Our broad goals going forward remain unchanged: we continue to seek molecular mechanisms for the fidelity and regulation of mRNA processing, with a particular focus on mRNA splicing in yeast. The three aims of this proposal are as follows: 1) Building on our previous demonstration that the spliceosome is a highly dynamic RNA-protein machine whose fidelity relies on RNA-dependent ATPases of the DEAD-box family, we are now employing single molecule FRET to focus on the dynamics of the ATP-dependent rearrangement most critical for the catalytic activation of the spliceosome. Brr2 is required for the unwinding of U4 from U6, allowing U6 to adopt its active conformation. By judicious placement of fluorophores in U6 RNA, which is then reconstituted into a snRNP, we will determine the directionality, step-size and processivity of unwinding and ask how these parameters are influenced by the U5 snRNP protein Prp8, which is required for Brr2-dependent unwinding. Additionally, we will test roles for post-translational modifications of Prp8, including cycles of ubiquitination and deubiquitination. 2) Our analyses using high-density genetic interaction maps have revealed evidence for an extensive interplay between splicing and transcription and, in particular, point to important roles for chromatin structure and modification We aim to parse the co-transcriptional environment by employing this large battery of double mutants in analysis of global splicing profiles by our splicing-sensitive microarrays in combination with ChIP of splicing factors and chromatin marks. We will also ask the role of polII elongation rate in splicing efficiency, exploiting an allelic series of mutations in the Trigger Lop (generated by Craig Kaplan) that alter transcription speeds over a 40-fold range. Extrapolating from the kinetic model for changes in alternative splicing patterns in metazoa, we would predict that slowing the rate would enhance splicing by allowing more time for co-transcriptional loading of snRNPs. Interestingly, our preliminary data suggest a more nuanced and transcript-specific picture. In parallel, we will ask similar mechanistic questions in S. pombe, where the multi- intronic structure of many genes is more like that of metazoa; thus we can explicitly ask whether polII actually pauses to ensure co-transcriptional splicing, as recently suggested in budding yeast. 3) One rationale for co- transcriptional coupling is that it enables coordination of multiple steps to fine-tune gene expression in response to the immediate needs of the cell. In this aim we explore two novel instances of co-transcriptional processes that appear to rely on coupling for appropriate biological responses to extracellular cues. In one case, amino acid starvation results in a rapid and specific down-regulation of ribosomal protein gene splicing; surprisingly, this response is dependent on the identity of the promoter, not the intron. In the second, efficient expression of the PAB1 gene, which is essential for mRNA export, requires a functional connection between the locus and Brr6, an essential nuclear envelope protein. Alterations in the dynamics of transient targeting generate a bi-modal population of cells, explaining the incomplete penetrance of the brr6-1 export phenotype.

Public Health Relevance

Human genes are interrupted by stretches of DNA that are read out into RNA but must be removed with a high degree of precision because failure to do so alters the resultant product, often with catastrophic consequences. It is now clear that errors in this process of RNA splicing are causative agents in a number of cancers. Our recent and future progress in determining the underlying molecular mechanisms of fidelity maintenance should provide important opportunities for potential therapeutic interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM021119-42
Application #
8828209
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Bender, Michael T
Project Start
1977-02-01
Project End
2016-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
42
Fiscal Year
2015
Total Cost
$965,974
Indirect Cost
$325,765
Name
University of California San Francisco
Department
Biochemistry
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
de Bruyn Kops, Anne; Guthrie, Christine (2018) Identification of the Novel Nup188-brr7 Allele in a Screen for Cold-Sensitive mRNA Export Mutants in Saccharomyces cerevisiae. G3 (Bethesda) 8:2991-3003
Nissen, Kelly E; Homer, Christina M; Ryan, Colm J et al. (2017) The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 31:688-701
Mayerle, Megan; Raghavan, Madhura; Ledoux, Sarah et al. (2017) Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency. Proc Natl Acad Sci U S A 114:4739-4744
Mayerle, Megan; Guthrie, Christine (2017) Genetics and biochemistry remain essential in the structural era of the spliceosome. Methods 125:3-9
Mayerle, Megan; Guthrie, Christine (2016) A new communication hub in the RNA world. Nat Struct Mol Biol 23:189-90
Mayerle, Megan; Guthrie, Christine (2016) Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. RNA 22:793-809
Ledoux, Sarah; Guthrie, Christine (2016) Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. J Biol Chem 291:11954-65
Soucek, Sharon; Zeng, Yi; Bellur, Deepti L et al. (2016) The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol :
Lipp, Jesse J; Marvin, Michael C; Shokat, Kevan M et al. (2015) SR protein kinases promote splicing of nonconsensus introns. Nat Struct Mol Biol 22:611-7
Patrick, Kristin L; Ryan, Colm J; Xu, Jiewei et al. (2015) Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. PLoS Genet 11:e1005074

Showing the most recent 10 out of 102 publications