Sarcomas primarily affect children and young adults. For pediatric oncologists, sarcomas are a major problem. Most are extremely aggressive and current protocols of surgery, radiation and chemotherapy are not adequate. Significant improvement for many sarcomas will require a detailed understanding of the genetic factors responsible for its progression, so that a gene targeted-based therapy can be developed to manage the cancer. Each sarcoma is likely to require its own specific molecular-based therapies for its management. To achieve these goals the information based for each sarcoma will likely require generating a mouse model of the human cancer that accurately simulates the human condition. The criterion to establish a """"""""good"""""""" mouse model for the human cancer is now very rigorous. Each human cancer is being classified with a genetic fingerprint involving the expression profile of thousands of genes. Having established authenticity of the mouse model, it can be used to identify the secondary genetic events responsible for its progression. Having in turn identified the genetic players, their identity can be used as a platform to generate a rational approach to therapeutic development. We have successfully modeled alveolar rhabdomyosarcoma and synovial sarcoma and are in the process of modeling Ewing's sarcoma. We will use these mouse models to determine the secondary genetic events responsible for their progression. We also propose to generate improved third generation mouse models that will initiate the cancers by inducing the appropriate chromosomal translocation in their cell of origin. The therapeutic potential of iPS cells for cell-base therapy of many major human diseases is enormous. However, attaining this potential will require a much deeper understanding of adult stem cell biology, which is nature's normal means for maintaining tissue homeostasis and response to modest trauma. We propose to continue our functional studies of two adult stem cell systems, intestinal stem cells and neuronal stem cells. These two stem cell systems are at opposite ends of the spectrum in terms of the frequency of tissue turnover that they maintain. By comparing these two systems we may gain insights into how adult stem cell systems can be modulated to alter their output.

Public Health Relevance

The grant proposal is directed at two goals: 1) modeling human sarcomas in the mouse and, 2) studying intestinal and neuronal stem cells. The first goal is directed at determining the genetic events responsible for progression of synovial and Ewing's sarcoma. Through the second goal we hope to gain a better appreciation of how adult stem cells are used to maintain tissue homeostasis and respond to modest trauma.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Development - 2 Study Section (DEV2)
Program Officer
Haynes, Susan R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Schools of Medicine
Salt Lake City
United States
Zip Code
Du, Xuguang; Feng, Tao; Yu, Dawei et al. (2015) Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors. Stem Cells 33:3228-38
Haldar, Malay; Karan, Goutam; Watanabe, Shuichi et al. (2014) Response: Contributions of the Myf5-independent lineage to myogenesis. Dev Cell 31:539-41
Straessler, Krystal M; Jones, Kevin B; Hu, Hao et al. (2013) Modeling clear cell sarcomagenesis in the mouse: cell of origin differentiation state impacts tumor characteristics. Cancer Cell 23:215-27
Jones, Kevin B; Datar, Manasi; Ravichandran, Sandhya et al. (2013) Toward an understanding of the short bone phenotype associated with multiple osteochondromas. J Orthop Res 31:651-7
Jones, K B; Su, L; Jin, H et al. (2013) SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene 32:2365-71, 2375.e1-5
Su, Le; Sampaio, Arthur V; Jones, Kevin B et al. (2012) Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 21:333-47
Makki, Nadja; Capecchi, Mario R (2012) Cardiovascular defects in a mouse model of HOXA1 syndrome. Hum Mol Genet 21:26-31
Yan, Kelley S; Chia, Luis A; Li, Xingnan et al. (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 109:466-71
Rogers, Scott W; Tvrdik, Petr; Capecchi, Mario R et al. (2012) Prenatal ablation of nicotinic receptor alpha7 cell lineages produces lumbosacral spina bifida the severity of which is modified by choline and nicotine exposure. Am J Med Genet A 158A:1135-44
Boulet, Anne M; Capecchi, Mario R (2012) Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev Biol 371:235-45

Showing the most recent 10 out of 18 publications