This project seeks to provide increased understanding of pharmacokinetics and mechanisms of corticosteroid (CS) effects on genomic and physiologic processes associated with endocrinologic, metabolic, and pharmacologic responses from local to systemic levels for CS dosed acutely and chronically. Our continued research will expand our mechanistic assessments to address gaps in knowledge about important sex differences. We also seek to continue development of pharmacokinetic, pharmacodynamic, pharmacogenomic (PK/PD/PG) and Disease (DIS) models that reveal the `rules of biology' at various levels of biological organization (systems biology) and allow improved quantitation and prediction of in vivo drug effects. Our experimental paradigm has often been large carefully-controlled studies in groups of animals subjected to defined conditions or drug treatments (giant rat studies). Blood and major organs of male rats were harvested over time frames reflecting either endogenous biorhythms and/or the onset and recovery of changes produced by single-doses or prolonged disturbances of homeostasis produced by chronic exposures of CS. We will expand computations and modeling for the interaction of a short rhythm (circadian) within a longer biorhythm (estrous cycle), further examine sex differences in steroid actions, and evolve more physiologically-relevant small to extensive systems pharmacologic models.
Specific Aim 1 will elucidate sex differences in circadian rhythms by extending our core experimental paradigm to provide carefully-enacted baseline (circadian/estrous cycle) profiles of diverse genes and biomarkers in normal cycling female rats as a function of estrous stage.
Specific Aim 2 will assess the PK/PD of single doses of a prototypic CS, methylprednisolone, in cycling intact female rats as a function of cycle stage to examine sex determinants of the diabetogenic glucose/insulin/adiponectin/fatty acid system and bone turnover systems.
Specific Aim 3 will extend our previous use of the collagen-induced arthritis model in male rats to females. We will evolve basic to complex mathematical models for inflammatory and bone dynamic processes to account for sex differences, combining these new measurements with our extensive data files from normal and arthritic male rats.
Specific Aim 4 will employ and evolve top-down computational approaches to assess circadian rhythms and global responsiveness to CS of genes, proteins, and biomarkers in blood and tissues to reveal potential indirect regulatory mechanisms in male versus female animals. These holistic studies and mathematical modeling innovations will provide improved multi-scale understanding of critical biological functions where sex differences are highly relevant and will have wide applications in quantitative pharmacology.

Public Health Relevance

This project will extend the pursuit of carefully-controlled, detailed studies of endogenous biorhythms and pharmacologic responses to corticosteroids in blood and tissues comparing male and female rats. Situations where gaps exist in understanding about sex differences such as diabetes, inflammation, and bone turnover will be examined. The experimental studies are complemented by the development of advanced methodology and mathematical models that reveal and quantitate 'the rules of biology and pharmacology' relevant to diverse drugs in addition to corticosteroids.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Modeling and Analysis of Biological Systems Study Section (MABS)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University of New York at Buffalo
Schools of Pharmacy
United States
Zip Code
Jusko, William J (2017) Clarification of contraceptive drug pharmacokinetics in obesity. Contraception 95:10-16
Koch, Gilbert; Jusko, William J; Schropp, Johannes (2017) Target mediated drug disposition with drug-drug interaction, Part II: competitive and uncompetitive cases. J Pharmacokinet Pharmacodyn 44:27-42
Jusko, William J (2017) Perspectives on variability in pharmacokinetics of an oral contraceptive product. Contraception 95:5-9
Ayyar, Vivaswath S; DuBois, Debra C; Almon, Richard R et al. (2017) Mechanistic Multi-Tissue Modeling of Glucocorticoid-Induced Leucine Zipper Regulation: Integrating Circadian Gene Expression with Receptor-Mediated Corticosteroid Pharmacodynamics. J Pharmacol Exp Ther 363:45-57
Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C et al. (2017) Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics 160:84-105
Kamisoglu, Kubra; Acevedo, Alison; Almon, Richard R et al. (2017) Understanding Physiology in the Continuum: Integration of Information from Multiple -Omics Levels. Front Pharmacol 8:91
Rao, Rohit T; Androulakis, Ioannis P (2017) Modeling the Sex Differences and Interindividual Variability in the Activity of the Hypothalamic-Pituitary-Adrenal Axis. Endocrinology 158:4017-4037
Koch, Gilbert; Jusko, William J; Schropp, Johannes (2017) Target-mediated drug disposition with drug-drug interaction, Part I: single drug case in alternative formulations. J Pharmacokinet Pharmacodyn 44:17-26
Bae, Seul-A; Androulakis, Ioannis P (2017) The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. Gene Regul Syst Bio 11:1177625017702393
Li, Xiaonan; DuBois, Debra C; Almon, Richard R et al. (2017) Modeling Sex Differences in Pharmacokinetics, Pharmacodynamics, and Disease Progression Effects of Naproxen in Rats with Collagen-Induced Arthritis. Drug Metab Dispos 45:484-491

Showing the most recent 10 out of 172 publications