Dose-sensitive signals play essential roles in cell fate decisions during development. One area of our research investigates mechanisms by which small quantitative differences in molecular signals are translated into dramatically different developmental fates. One of our long-term goals is to dissect the quantitative signals and the genetic switch that specifies sexual fate in the nematode C. elegans. C. elegans determines sex by tallying X-chromosome number relative to the ploidy, the sets of autosomes (X:A signal). We showed that a set of genes on X, called X signal elements (XSEs), relays X-chromosome dose by repressing the activity of the sex determination switch gene xol-1 through both transcriptional and pre-mRNA mechanisms. Another set of genes called autosomal signal elements (ASEs) communicates ploidy by antagonizing the XSEs to activate xol-1. xol-1 specifies the male fate when active and the hermaphrodite fate when inactive. Our work investigates molecular mechanisms by which XSEs and ASEs antagonize each other to determine sex. One XSE is a nuclear hormone receptor (NHR) called SEX-1, a homolog of the retinoic acid receptor (RAR) gene family that participates in signaling pathways used for patterning and cellular differentiation in all metazoans. Disruptions in RARs are associated with human cancers, knowledge that has lead to the use of retinoids in the treatment of leukemias. Information gained from model organisms such as C. elegans about the genetic pathways in which NHRs function will provide an opportunity to discover other gene targets for drug therapy, which might be applicable to humans. A second long-term goal is understand the mechanism of X-chromosome dosage compensation, which equalizes X expression between the sexes. We defined a protein complex (DCC) that binds both X chromosomes of XX animals to repress X expression by half. Members of the complex also play essential roles in the compaction, resolution, and segregation of mitotic and meiotic chromosomes as well as the control of genetic recombination between homologous meiotic chromosomes. Not only is the protein complex essential for proper gene expression and viability, most components are essential for genome stability. Thus, studying dosage compensation will help us understand genomic instability caused by errors in chromosome segregation and disruption of meiotic recombination. We have identified cis-acting regulatory elements that target the X chromosome for repression by the DCC and discovered fundamental principles by which the DCC recognizes and binds X. Our future work will explore the connection between chromosome structure, DCC binding, and chromosome-wide gene repression.

Public Health Relevance

A protein we found to be pivotal for sex determination in the round worm C. elegans is a homolog of the retinoic acid receptor (RAR) gene family that participates in signaling pathways used for patterning and cellular differentiation in all metazoans. Disruptions in RARs are associated with human cancers, knowledge that has lead to the use of retinoids in the treatment of leukemias. Information gained from model organisms such as C. elegans about the genetic pathways in which NHRs function will provide an opportunity to discover other gene targets for drug therapy, which might be applicable to humans. In addition, we have discovered protein complexes with shared components that participate in many chromosome behaviors including chromosome-wide gene regulation through dosage compensation, mitotic chromosome segregation, and the control of meiotic chromosome recombination. Disruption of these proteins causes severe chromosome segregation defects and genomic instability. Examination of tumors invariably reveals the genome to be rearranged and aneuploid, showing the significant role chromosome instability plays in generating cancerous cells. Our protein complexes give us insight into the mechanisms underlying the genome rearrangements associated with such a cancerous state.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM030702-32
Application #
8391191
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Carter, Anthony D
Project Start
1982-09-01
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2014-11-30
Support Year
32
Fiscal Year
2013
Total Cost
$517,286
Indirect Cost
$167,508
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Farboud, Behnom; Jarvis, Erin; Roth, Theodore L et al. (2018) Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms. J Vis Exp :
Yin, Da; Schwarz, Erich M; Thomas, Cristel G et al. (2018) Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 359:55-61
Bian, Qian; Anderson, Erika C; Brejc, Katjuša et al. (2017) Dynamic Control of Chromosome Topology and Gene Expression by a Chromatin Modification. Cold Spring Harb Symp Quant Biol 82:279-291
Brejc, Katjuša; Bian, Qian; Uzawa, Satoru et al. (2017) Dynamic Control of X Chromosome Conformation and Repression by a Histone H4K20 Demethylase. Cell 171:85-102.e23
Tian, Ye; Garcia, Gilberto; Bian, Qian et al. (2016) Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt). Cell 165:1197-1208
Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian et al. (2016) Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution. Elife 5:
Farboud, Behnom; Meyer, Barbara J (2015) Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199:959-71
Crane, Emily; Bian, Qian; McCord, Rachel Patton et al. (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240-4
Maxwell, Colin S; Kruesi, William S; Core, Leighton J et al. (2014) Pol II docking and pausing at growth and stress genes in C. elegans. Cell Rep 6:455-66
Farboud, Behnom; Nix, Paola; Jow, Margaret M et al. (2013) Molecular antagonism between X-chromosome and autosome signals determines nematode sex. Genes Dev 27:1159-78

Showing the most recent 10 out of 48 publications