One of the overall goals of this proposal is to understand the role of PKA signaling in the neuronal pathways that regulate feeding and energy expenditure. Mouse genetic techniques allow us to investigate this problem in a physiological setting and also provide us with novel tools for defining regulation at the molecular level. We propose to use a mouse genetic approach to detect and quantities neuron-specific mRNA regulation in regions of the hypothalamus known to be involved in body weight regulation and the response to the adipose derived hormone, leptin. In addition to detecting changes in transcription we will examine the potential role of translational control of pre-existing mRNAs. Recent work has continued to challenge and expand our views on the neural control of body weight. Leptin receptors have been shown to engage multiple signaling pathways in a neuron specific pattern and the crosstalk between these signaling systems, including the cAMP/PKA pathway, is a new avenue that needs to be explored more comprehensively. The RII2 KO mouse line is lean and resistant to diet-induced obesity and our recent results indicate that this is because of an increase in leptin sensitivity in the brain.
The specific aims of this proposal are: (1) Identify the hypothalamic neurons in which PKA activity plays a role in leptin sensitivity and body weight regulation (2) Assay changes in polysome-associated mRNAs in specific hypothalamic neurons in response to diet and leptin (3) Determine the mechanism of increased leptin sensitivity in RII2 KO mice. The sensitivity of the hypothalamic response network to leptin is one of the ultimate determinants of how much energy is stored as fat and leptin resistance is one of the defining features of obesity.

Public Health Relevance

The regulation of feeding and energy balance is coordinated by neurons in the hypothalamic region of the brain. We have demonstrated that intracellular signaling through the cAMP/Protein Kinase A system can regulate this neuronal pathway and prevent diet-induced obesity in mice. In this project, we will study this mechanism for regulating energy balance and hope to reveal novel therapeutic targets for future clinical applications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Gerratana, Barbara
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Yang, Linghai; Gilbert, Merle L; Zheng, Ruimao et al. (2014) Selective expression of a dominant-negative type I? PKA regulatory subunit in striatal medium spiny neurons impairs gene expression and leads to reduced feeding and locomotor activity. J Neurosci 34:4896-904
Wu, Qi; Zheng, Ruimao; Srisai, Dollada et al. (2013) NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus. Proc Natl Acad Sci U S A 110:14765-70
Zheng, Ruimao; Yang, Linghai; Sikorski, Maria A et al. (2013) Deficiency of the RII? subunit of PKA affects locomotor activity and energy homeostasis in distinct neuronal populations. Proc Natl Acad Sci U S A 110:E1631-40
Lu, Yuan; Zha, Xiang-ming; Kim, Eun Young et al. (2011) A kinase anchor protein 150 (AKAP150)-associated protein kinase A limits dendritic spine density. J Biol Chem 286:26496-506
Willis, Brandon S; Niswender, Colleen M; Su, Thomas et al. (2011) Cell-type specific expression of a dominant negative PKA mutation in mice. PLoS One 6:e18772
Nagalla, Srikanth; Shaw, Chad; Kong, Xianguo et al. (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117:5189-97
Weisenhaus, Michael; Allen, Margaret L; Yang, Linghai et al. (2010) Mutations in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological and behavioral phenotypes in mice. PLoS One 5:e10325
Nichols, C Blake; Rossow, Charles F; Navedo, Manuel F et al. (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107:747-56
Sanz, Elisenda; Yang, Linghai; Su, Thomas et al. (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A 106:13939-44
Lu, Yuan; Zhang, Mingxu; Lim, Indra A et al. (2008) AKAP150-anchored PKA activity is important for LTD during its induction phase. J Physiol 586:4155-64

Showing the most recent 10 out of 70 publications