This project, currently in its 27th year, has been aimed at understanding the structure of many nucleoprotein complexes, particularly those involved in homologous genetic recombination. Almost all of the proposed projects will depend upon our newly installed Titan Krios cryo-EM. This microscope, combined with our extensive experience in the area of heterogeneous helical polymers, puts us in a unique position to accomplish the stated aims: 1) MDA5-RNA Filaments - The innate immune system provides a defense against many microbial structures, but is poorly understood. Extending our preliminary results will have a significant impact, and high-resolution EM provides the best way to study both the protein and RNA in these filaments. 2) RIG-I- RNA Filaments - We can directly address the controversy surrounding whether this protein forms filaments, and understand the similarities and differences with the MDA5 system. 3) Binding of HIV NC to Actin - Preliminary results show a highly specific binding, and the structural studies that we propose may lead to entirely new targets for preventing HIV transmission. 4) Cas7 Filaments - Like MDA5 and RIG-I, Cas7 is part of an innate immune system, but in archaea. 5) Xrcc4-Cernunnos Filaments - We have worked for many years on proteins and filaments involved in homologous recombination. These filaments are part of the Non-Homologous End Joining pathway for DNA repair, and are of great interest and significance to understanding failures in DNA repair which lead to genomic instability and cancer. 6) Viral Capsid Tubes - We will continue our work on helical tubes formed from both the P22 and HIV capsid proteins. With P22 these tubes will be modified to contain RNA. Both projects, when extended to high resolution, should yield new insights into the ability of capsid hexamers to switch conformations.

Public Health Relevance

This project is aimed at understanding the structures of a range of nucleoprotein complexes. These complexes include viral capsids, filaments that form as part of the innate immune system to recognize viral RNA, and assemblies involved in DNA repair. Almost all of these complexes are directly related to human health, and could be important in designing new strategies to deal with bacterial and viral pathogenesis, as well as to better understand the breakdowns of DNA repair that lead to cancer.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
2R01GM035269-28A1
Application #
8630405
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Flicker, Paula F
Project Start
Project End
Budget Start
Budget End
Support Year
28
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Virginia
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Patel, Gayatri; Johnson, Daniel S; Sun, Bo et al. (2011) A257T linker region mutant of T7 helicase-primase protein is defective in DNA loading and rescued by T7 DNA polymerase. J Biol Chem 286:20490-9
Gajewski, Stefan; Webb, Michael R; Galkin, Vitold et al. (2011) Crystal structure of the phage T4 recombinase UvsX and its functional interaction with the T4 SF2 helicase UvsW. J Mol Biol 405:65-76
Galkin, Vitold E; Britt, Rachel L; Bane, Lukas B et al. (2011) Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein. J Mol Biol 408:815-24
Hui, Monica P; Galkin, Vitold E; Yu, Xiong et al. (2010) ParA2, a Vibrio cholerae chromosome partitioning protein, forms left-handed helical filaments on DNA. Proc Natl Acad Sci U S A 107:4590-5
Yu, Xiong; Egelman, Edward H (2010) Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale. J Mol Biol 401:544-51
Lucarelli, Debora; Wang, Ying A; Galkin, Vitold E et al. (2009) The RecB nuclease domain binds to RecA-DNA filaments: implications for filament loading. J Mol Biol 391:269-74
Makhov, Alexander M; Sen, Anindito; Yu, Xiong et al. (2009) The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing. J Mol Biol 386:273-9
Wang, Ying A; Yu, Xiong; Silverman, Philip M et al. (2009) The structure of F-pili. J Mol Biol 385:22-9
Galkin, Vitold E; Yu, Xiong; Bielnicki, Jakub et al. (2009) Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain. J Mol Biol 385:779-87
Zhang, Xiao-Ping; Galkin, Vitold E; Yu, Xiong et al. (2009) Loop 2 in Saccharomyces cerevisiae Rad51 protein regulates filament formation and ATPase activity. Nucleic Acids Res 37:158-71

Showing the most recent 10 out of 60 publications