These investigations will focus on elucidating the mechanisms of messenger RNA degradation in prokaryotes and on identifying the structural features of bacterial transcripts that determine their stabilities. In particular, the decay of three mRNA species will be examined: the monocistronic ompA and bla messages of the enteric bacterium Escherichia coli and the polycistronic rxcA transcript of the photosynthetic bacterium Rhodopseudomonas capsulata. The experimental approach to be employed will involve creating defined mutations and fusions of these three genes in vitro, introducing these altered genetic constructs into appropriate bacterial hosts, and analyzing the decay of the resulting mRNA transcripts. The results of these studies should enhance our knowledge of a fundamental but much neglected aspect of gene expression that is poorly understood. This knowledge should ultimately be of value both to our understanding of a biological regulatory process that may be involved in human disease (e.g., Alzheimer's disease, thalassemia, cancer) and to efforts to improve yields of medically and commercially useful proteins produced in bacteria through recombinant DNA technology.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Bischler, Thorsten; Hsieh, Ping-Kun; Resch, Marcus et al. (2017) Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter pylori and Global Analysis of Its RNA Targets. J Biol Chem 292:1934-1950
Belasco, Joel G (2017) Death by translation: ribosome-assisted degradation of mRNA by endonuclease toxins. FEBS Lett 591:1851-1852
Luciano, Daniel J; Vasilyev, Nikita; Richards, Jamie et al. (2017) A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli. Mol Cell 67:44-54.e6
Richards, Jamie; Belasco, Joel G (2016) Distinct Requirements for 5'-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G. J Biol Chem 291:5038-48
Luciano, Daniel J; Belasco, Joel G (2015) NAD in RNA: unconventional headgear. Trends Biochem Sci 40:245-7
Schmidt, Skye A; Foley, Patricia L; Jeong, Dong-Hoon et al. (2015) Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res 43:309-23
Foley, Patricia L; Hsieh, Ping-kun; Luciano, Daniel J et al. (2015) Specificity and evolutionary conservation of the Escherichia coli RNA pyrophosphohydrolase RppH. J Biol Chem 290:9478-86
Belasco, Joel G (2015) Way to go, RNA. RNA 21:565-6
Hui, Monica P; Foley, Patricia L; Belasco, Joel G (2014) Messenger RNA degradation in bacterial cells. Annu Rev Genet 48:537-59
Vogel, Jörg; Gottesman, Susan; Belasco, Joel et al. (2014) Meeting report: Regulating with RNA in Bacteria 2013. RNA Biol 11:403-12

Showing the most recent 10 out of 45 publications