Bacteria live in diverse and variable environments and constitute about half of the world's biomass. Free-living bacteria must adapt to daily and seasonal temperature changes;those living in host organisms experience temperature change during their transmission cycles, which usually include transient residence in the external environment (e.g. fecal-oral transmission). On the other hand, 90% of the oceans are ? 5?C, adaptations that enable bacterial growth in the cold are essential for many bacteria. In toto, adaptation to temperature change is one of the most pervasive challenges facing bacteria. We study the stress responses that enable adaptation to both heat and cold. Our long-term studies of thermal adaptation have consistently set new paradigms. We identified and are dissecting the two homeostatic circuits that monitor protein folding in all compartments of the bacterial cell. ?3 monitors both cytoplasmic and inner membrane (IM) protein folding status, whereas ?E monitors protein-folding stress in the envelope, and maintains outer membrane (OM) homeostasis, serving as a paradigm for intercompartmental communication in prokaryotes. Thus, we have identified and are studying the central protein quality control circuitry of gram-negative bacteria It is the underlying mechanisms and principles of process coordination that is the focus of our new studies. We will determine how the circuitry controlling s32 integrates protein folding status signals from both the IM and cytoplasmic compartment. Likewise, we will investigate how the circuitry controlling ?32 integrates three signals of OM homeostasis. Higher order process integration is poorly understood in any organism. Importantly, the existing knowledge base and available tools permit us to carry out an incisive investigation of this critical issue. Additionaly, these studies may provide the first example of how unicellular organisms sense and integrate signals from their outer membranes or cell walls to maintain cellular integrity. In contrast to hea shock responses that are mediated by transcriptional homeostatic circuits, cold adaptation is centered around how the cell responds to critical failures in translation. This response is poorly understood, despite its universality. As cold shock perturbs central gene expression processes, it may expose critical, unanticipated interconnections between these processes. We study the cold shock response using a revolutionary new technology that enables us to detect instantaneous changes in translation at the genomic level with great sensitivity and near-nucleotide resolution. Our initial results modifying this technique for the bacterial CSR not only immediately identified the temporal pattern of the response but also revealed unexpected changes in global translational pausing and termination that were inaccessible by previous methods, thereby increasing the known repertoire of translational modulation. We will continue to dissect the process interconnections we have identified and also perform comparable studies in B. subtilis, to uncover common and unique strategies to this universal stress.

Public Health Relevance

Bacteria live in diverse and variable environments, and must adapt to daily and seasonal changes in temperature to be successful. Understanding the processes used to mediate adaptation to heat and cold is an important area of study. On the one hand, it will enable us to develop new strategies to fight disease. On the other hand, once the critical circuits are identified, we may be able to alter them to enable bacteria to live in ne environments, which may be necessary as the plant warms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM036278-30
Application #
8610923
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Reddy, Michael K
Project Start
1999-01-01
Project End
2017-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
30
Fiscal Year
2014
Total Cost
$378,644
Indirect Cost
$123,317
Name
University of California San Francisco
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Guo, Monica S; Gross, Carol A (2014) Stress-induced remodeling of the bacterial proteome. Curr Biol 24:R424-34
Guo, Monica S; Updegrove, Taylor B; Gogol, Emily B et al. (2014) MicL, a new ?E-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 28:1620-34
Rhodius, Virgil A; Segall-Shapiro, Thomas H; Sharon, Brian D et al. (2013) Design of orthogonal genetic switches based on a crosstalk map of ýýs, anti-ýýs, and promoters. Mol Syst Biol 9:702
Lima, Santiago; Guo, Monica S; Chaba, Rachna et al. (2013) Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 340:837-41
Typas, Athanasios; Banzhaf, Manuel; Gross, Carol A et al. (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123-36
Gogol, Emily B; Rhodius, Virgil A; Papenfort, Kai et al. (2011) Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc Natl Acad Sci U S A 108:12875-80
Nichols, Robert J; Sen, Saunak; Choo, Yoe Jin et al. (2011) Phenotypic landscape of a bacterial cell. Cell 144:143-56
Chaba, Rachna; Alba, Benjamin M; Guo, Monica S et al. (2011) Signal integration by DegS and RseB governs the σ E-mediated envelope stress response in Escherichia coli. Proc Natl Acad Sci U S A 108:2106-11
de Almeida, Alejandra; Catone, Mariela V; Rhodius, Virgil A et al. (2011) Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli. Appl Environ Microbiol 77:6622-9
Typas, Athanasios; Banzhaf, Manuel; van den Berg van Saparoea, Bart et al. (2010) Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143:1097-109

Showing the most recent 10 out of 58 publications