The long term objective of this work is to examine two new signaling pathways that appear to be involved in regulation of cell growth. One involves activation of a specific phospholipase C (PLC5) that integrates signals from G-protein coupled receptors (GPCRs) to the MAP kinase pathway. The other involves transcriptional upregulation of Cyr61 (CCN1), a protein that is expressed as an immediate early gene, secreted and signals through integrin receptors. The extracellular stimuli (thrombin, LPA, S1P) and the intracellular pathway (activation of the small GTPase RhoA) that regulate these processes are commonly associated with cell injury, inflammation and cancer. The proposal tests the hypothesis that PLC5 and Cyr61 subserve critical signaling roles in these pathophysiological conditions and utilizes both in vitro and in vivo studies, on mouse astrocytes and a human glioblastoma cell line to discover regulatory mechanisms that could be targeted to block these pathways. The first specific aim is to examine the involvement of PLC5 as a target for activation by GPCRs, and as an effector of downstream responses leading to cell proliferation and gene expression. The hypothesis to be tested is that PLC5 integrates signals that activate Rho into signals critical for DNA synthesis by activating a Rap1/ERK signal cascade and by localized generation of diacylglycerol, activation of its downstream protein kinase targets and altered gene expression. Proposed experiments use primary astrocytes from PLC5 knockout mice to delineate pathways for PLC5 activation by thrombin, S1P, and LPA receptors, to determine whether PLC5 serves as a guanine nucleotide exchange factor for activation of Rap1 and subsequent activation of ERK and to examine the role played by PLC5 in mediating astroglial gene expression and cell proliferation in vitro. The second specific aim is to elucidate the role played by increased CCN1/Cyr61 expression in Rho-mediated responses to GPCR agonists. Proposed experiments will use 1321N1 glioblastoma cells and other cell lines to determine whether CCN1 gene expression is transcriptionally regulated as a consequence of GPCR activation of G 12/13 and Rho mediated pathways, whether it acts back on the cell through integrin signaling pathways to induce sustained responses, and to demonstrate that sustained signaling and DNA synthesis in response to GPCR agonists depends on CCN1 upregulation. The third specific aim examines the in vivo pathophysiological roles of PLC5 in astrogliosis following brain and spinal injury and of CCN1 in glial tumor development. The hypothesis to be tested is that Rho signaling pathways and the GPCR ligands that activate them promote these responses through their effects on PLC5 and CCN1. Proposed experiments use PLC5 knockout mice to examine the role of this enzyme in astrogliosis produced in response to in vivo brain or spinal cord injury. Knockdown of CCN1 with shRNA in 1321N1 and other glioblastoma cells is used to examine the role of CCN1 in tumor cell growth in the chick chorioallantoic membrane (CAM) assay and in nude mice.

Public Health Relevance

Cells receive environmental cues which direct them to proliferate, migrate or die, using a process called signal transduction. A protein called RhoA transduces signals that originate from G-protein coupled receptors on the cell surface and appears to be abnormally regulated in cancer and cell injury. We have discovered two """"""""targets"""""""" that RhoA talks to inside the cell (phospholipase C5 and CCN1) and propose to study how they are controlled, what they do and whether inhibiting their function normalizes cell signaling in vitro and in models of brain injury and cancer.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Dunsmore, Sarah
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Yung, Bryan S; Brand, Cameron S; Xiang, Sunny Y et al. (2017) Selective coupling of the S1P3 receptor subtype to S1P-mediated RhoA activation and cardioprotection. J Mol Cell Cardiol 103:1-10
Dusaban, Stephanie S; Chun, Jerold; Rosen, Hugh et al. (2017) Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes. J Neuroinflammation 14:111
Yu, Olivia M; Miyamoto, Shigeki; Brown, Joan Heller (2016) Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. Mol Cell Biol 36:39-49
Yu, Olivia M; Brown, Joan Heller (2015) G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation. Mol Pharmacol 88:171-80
Dusaban, Stephanie S; Kunkel, Maya T; Smrcka, Alan V et al. (2015) Thrombin promotes sustained signaling and inflammatory gene expression through the CDC25 and Ras-associating domains of phospholipase C?. J Biol Chem 290:26776-83
Dusaban, Stephanie S; Brown, Joan Heller (2015) PLC? mediated sustained signaling pathways. Adv Biol Regul 57:17-23
Sayyah, Jacqueline; Bartakova, Alena; Nogal, Nekeisha et al. (2014) The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem 289:17689-98
Zhao, Xia; Ding, Eric Y; Yu, Olivia M et al. (2014) Induction of the matricellular protein CCN1 through RhoA and MRTF-A contributes to ischemic cardioprotection. J Mol Cell Cardiol 75:152-61
Dusaban, Stephanie S; Purcell, Nicole H; Rockenstein, Edward et al. (2013) Phospholipase C epsilon links G protein-coupled receptor activation to inflammatory astrocytic responses. Proc Natl Acad Sci U S A 110:3609-14
Xiang, Sunny Yang; Dusaban, Stephanie S; Brown, Joan Heller (2013) Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta 1831:213-22

Showing the most recent 10 out of 53 publications