This research program aims to understand clathrin biochemistry in order to elucidate how clathrin-coated vesicle (CCV) formation and function is regulated in cells. CCVs implement the fundamental membrane traffic pathways of endocytosis and lysosome biogenesis. CCVs also participate in antigen presentation, secretory granule biogenesis and synaptic vesicle regeneration. Thus, CCVs influence cellular pathways that are critical for human health. The characteristic lattice-like CCV coat is formed by interactions between clathrin heavy chains (CHCs). Clathrin light chain (LC) subunits control CCV binding to other proteins. Work from the past funding period generated new hypotheses about how each subunit contributes to CCV function and regulation.
Aims 1 and 2 of this proposal focus on the CMC and test the hypothesis that regulation of CCV formation depends on control of key low affinity CHC interactions by protein competition and phosphorylation. CHC interactions with CHC and adaptor proteins will be mapped at the molecular level and the contributions of these interactions to in vitro and in vivo clathrin assembly will be established. The role of CHC phosphorylation in regulating CCV uptake of signaling receptors will also be addressed. Approaches include site-directed mutagenesis of recombinant proteins based on structural information and studying the cellular effects of mutagenesis after siRNA down-regulation and reconstitution.
Aims 3 and 4 of this proposal test the hypothesis that clathrin LCs play important regulatory roles at the tissue level. Molecular interactions of LCs with Hip proteins and other binding proteins will be defined through structural and biochemical analysis. The effect of these interactions on cell-substrate contacts, as well as conventional CCV pathways, will be analyzed and their regulation characterized. Experiments to ablate LC gene expression in mice will address LC function in vertebrate embryonic development and in tissue-specific cell lineages, relating molecular information about CCV function to physiological pathways. Public health relevance: The clathrin protein is involved in key pathways that contribute to maintenance of human health including nutrition, lipid metabolism, hormone regulation, response to infection and cell growth control. Understanding clathrin function therefore has relevance for establishing molecular mechanisms of a number of human disease states such as heart disease, diabetes, cancer, neuro-muscular defects and infection and immunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM038093-23
Application #
7761767
Study Section
Cell Structure and Function (CSF)
Program Officer
Ainsztein, Alexandra M
Project Start
1988-02-01
Project End
2011-08-31
Budget Start
2010-02-01
Budget End
2011-08-31
Support Year
23
Fiscal Year
2010
Total Cost
$347,958
Indirect Cost
Name
University of California San Francisco
Department
Biochemistry
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Wu, Shuang; Majeed, Sophia R; Evans, Timothy M et al. (2016) Clathrin light chains' role in selective endocytosis influences antibody isotype switching. Proc Natl Acad Sci U S A 113:9816-21
Goyos, Ana; Guethlein, Lisbeth A; Horowitz, Amir et al. (2015) A Distinctive Cytoplasmic Tail Contributes to Low Surface Expression and Intracellular Retention of the Patr-AL MHC Class I Molecule. J Immunol 195:3725-36
Brodsky, Frances M; Sosa, R Thomas; Ybe, Joel A et al. (2014) Unconventional functions for clathrin, ESCRTs, and other endocytic regulators in the cytoskeleton, cell cycle, nucleus, and beyond: links to human disease. Cold Spring Harb Perspect Biol 6:a017004
Sullivan, Chelsea S; Scheib, Jami L; Ma, Zhong et al. (2014) The adaptor protein GULP promotes Jedi-1-mediated phagocytosis through a clathrin-dependent mechanism. Mol Biol Cell 25:1925-36
Majeed, Sophia R; Vasudevan, Lavanya; Chen, Chih-Ying et al. (2014) Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 5:3891
Vassilopoulos, Stéphane; Gentil, Christel; Lainé, Jeanne et al. (2014) Actin scaffolding by clathrin heavy chain is required for skeletal muscle sarcomere organization. J Cell Biol 205:377-93
Young, Anna; Stoilova-McPhie, Svetla; Rothnie, Alice et al. (2013) Hsc70-induced changes in clathrin-auxilin cage structure suggest a role for clathrin light chains in cage disassembly. Traffic 14:987-96
Hoshino, Sachiko; Sakamoto, Kazuho; Vassilopoulos, Stéphane et al. (2013) The CHC22 clathrin-GLUT4 transport pathway contributes to skeletal muscle regeneration. PLoS One 8:e77787
Holmes, Brandon B; DeVos, Sarah L; Kfoury, Najla et al. (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 110:E3138-47
Stachowiak, Jeanne C; Brodsky, Frances M; Miller, Elizabeth A (2013) A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15:1019-27

Showing the most recent 10 out of 67 publications