This project aims to discover small-molecule probes of both mTOR-dependent nutrient-response signaling and histone-mark-dependent chromatin signaling. These probes are expected to illuminate the principles that underlie the nutrient-response and chromatin-signaling cellular networks, and to provide starting points for the discovery of new medicines that act on these networks.
These aims will be pursued by the use of (1) global metabolic measurements of cells treated with an mTOR inhibitor, (2) chromatin-state-selective antibodies identified by the use of a new microfluidic/microarray-based technique for screening antibodies, (3) novel high-content screens and gene expression/high-throughput screens for the identification of small- molecule modulators of chromatin-modifying enzymes, and (4) both a novel synthetic chemistry method for targeting small molecules towards chromatin-modifying enzymes and follow-up synthetic chemistry to optimize the properties of the small-molecule probes. Lay language: Recent clinical trials, some successfully completed and others still ongoing, suggest that small molecules that target either of two only recently recognized cellular pathways (one named "nutrient- response" and the other "chromatin") have remarkable potential as life-saving medicines. The recognition of these pathways was made possible by previous research sponsored by this grant. The proposed continuation research aims to discover new small molecules that target new elements of these pathways and to perform experiments that will illuminate their most promising medical applications.

Public Health Relevance

The proposed research aims to address the gap between understanding and affecting disease by innovating in chemistry and exploring complex biology with small molecules. The research aims to discover small molecules that modulate two biological processes - stress signaling and chromatin signaling - with considerable promise for medicine. Such small molecules will be used to probe the consequences of modulating key mediators of the processes in order to gain a better understanding of their medical potential as targets for novel therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM038627-28
Application #
8486438
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Fabian, Miles
Project Start
1988-09-01
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
28
Fiscal Year
2013
Total Cost
$537,881
Indirect Cost
$206,477
Name
Broad Institute, Inc.
Department
Type
DUNS #
623544785
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Yuan, Yuan; Hartland, Kate; Boskovic, Zarko et al. (2013) A small-molecule inducer of PDX1 expression identified by high-throughput screening. Chem Biol 20:1513-22
Abazeed, Mohamed E; Adams, Drew J; Hurov, Kristen E et al. (2013) Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res 73:6289-98
Boskovic, Zarko V; Hussain, Mahmud M; Adams, Drew J et al. (2013) Synthesis of piperlogs and analysis of their effects on cells. Tetrahedron 69:
Schaefer, Giannina I; Perez, Jose R; Duvall, Jeremy R et al. (2013) Discovery of small-molecule modulators of the Sonic Hedgehog pathway. J Am Chem Soc 135:9675-80
Ignatenko, Vasily A; Han, Yong; Tochtrop, Gregory P (2013) Molecular library synthesis using complex substrates: expanding the framework of triterpenoids. J Org Chem 78:410-8
Yuan, Y; Tang, A J; Castoreno, A B et al. (2013) Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis 4:e690
Adams, Drew J; Boskovic, Zarko V; Theriault, Jimmy R et al. (2013) Discovery of small-molecule enhancers of reactive oxygen species that are nontoxic or cause genotype-selective cell death. ACS Chem Biol 8:923-9
Luo, Xuelai; Liu, Yongxiang; Kubicek, Stefan et al. (2011) A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. J Am Chem Soc 133:9451-6
Kemp, Melissa M; Wang, Qiu; Fuller, Jason H et al. (2011) A novel HDAC inhibitor with a hydroxy-pyrimidine scaffold. Bioorg Med Chem Lett 21:4164-9
Shaw, Stanley Y; Blodgett, David M; Ma, Maggie S et al. (2011) Disease allele-dependent small-molecule sensitivities in blood cells from monogenic diabetes. Proc Natl Acad Sci U S A 108:492-7

Showing the most recent 10 out of 84 publications