The long term objective of this proposal is to study the structure, function and regulation of insect cytochrome P450 genes and proteins. Members of this diverse superfamily of enzymes are involved in all essential life functions of insect, from hormone and pheromone metabolism to pesticide detoxification, with many functions still unexplored. The wealth of new information and technologies provided by genomics approaches and the expertise on P450 biochemistry gained over the last years will be exploited to address the following specific aims: 1) Genomics and DNA microassay technologies will be used to identify the P450 genes responsible for essential physiological functions in insects. 2) Study and reconstitution of P450 protein. 3) Study the mechanisms of induction of P450 genes by Phenobarbital in transgenic Drosophila.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM039014-14
Application #
2900660
Study Section
Special Emphasis Panel (ZRG1-TMP (01))
Project Start
1991-01-01
Project End
2003-06-30
Budget Start
1999-07-01
Budget End
2000-06-30
Support Year
14
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Arizona
Department
Zoology
Type
Schools of Earth Sciences/Natur
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Giraudo, Maeva; Unnithan, G Chandran; Le Goff, Gaƫlle et al. (2010) Regulation of cytochrome P450 expression in Drosophila: Genomic insights. Pestic Biochem Physiol 97:115-122
Murataliev, Marat B; Guzov, Victor M; Walker, F Ann et al. (2008) P450 reductase and cytochrome b5 interactions with cytochrome P450: effects on house fly CYP6A1 catalysis. Insect Biochem Mol Biol 38:1008-15
Jacobsen, Neil E; Kover, Katalin E; Murataliev, Marat B et al. (2006) Structure and stereochemistry of products of hydroxylation of human steroid hormones by a housefly cytochrome P450 (CYP6A1). Magn Reson Chem 44:467-74
Murataliev, Marat B; Trinh, Long N; Moser, Lani V et al. (2004) Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. Biochemistry 43:1771-80
Murataliev, Marat B; Feyereisen, Rene; Walker, F Ann (2004) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698:1-26
Helvig, Christian; Tijet, Nathalie; Feyereisen, Rene et al. (2004) Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Biochem Biophys Res Commun 325:1495-502
Tijet, N; Helvig, C; Feyereisen, R (2001) The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262:189-98
Sabourault, C; Guzov, V M; Koener, J F et al. (2001) Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdalphaE7) gene in resistant house flies. Insect Mol Biol 10:609-18
Murataliev, M B; Feyereisen, R (2000) Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Biochemistry 39:5066-74
Paquette, S M; Bak, S; Feyereisen, R (2000) Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol 19:307-17

Showing the most recent 10 out of 30 publications