The programmatic goals of our work supported by GM040654 have been to elucidate novel biological activities triggered by the EGFR- and/or ErbB2-Rho GTPase signaling axes critical in the development and maintenance of the transformed phenotype. These efforts have involved a combination of biochemical, cell biological, and structural approaches, and more recently mouse models. Recent work has focused on our discovery of an exciting signaling outcome in cancer cells that results in the activation of a key metabolic enzyme, glutaminase C (GAC), which catalyzes the hydrolysis of glutamine to glutamate plus ammonia. This represents a critical step for elevating glutamine metabolism, which together with changes in glycolysis (the """"""""Warburg effect""""""""), is now widely recognized to be essential for malignant transformation. Thus, understanding the regulatory mechanisms responsible for triggering these metabolic changes is of great interest to the cancer biology and pharmaceutical communities. Given its important role in glutamine metabolism, GAC is likely to be regulated in a number of biological contexts. In this renewal application, we will focus on how GAC is activated in breast cancer cells and its consequences for satisfying their """"""""glutamine addiction"""""""" and the development of the malignant state. We also will delineate the mechanisms of action of a novel group of allosteric GAC inhibitors that we recently discovered. They were responsible for highlighting the connections between different signaling proteins and glutamine metabolism, and thus potentially offer new therapeutic strategies for blocking cancer progression. These efforts will be pursued through the following lines of investigation: 1) Defining the phosphorylation event(s) that leads to GAC activation in breast cancer cells. We will identify the protein kinase(s) involved and the essential phosphorylation site(s) responsible for triggering GAC activation in breast cancer cell lines as well as in cells isolated from human breast tumor samples. 2) Determining the mechanistic basis for a new class of allosteric inhibitors that block GAC activation. We will establish how a newly identified allosteric inhibitor of GAC called 968, and related compounds, bind to the enzyme and block its activation. In particular, we want to determine whether this class of inhibitors binds preferentialy to the inactive state of GAC and/or blocks the ability of GAC to be phosphorylated and thus prevents a key step in its activation. 3) Determining the role of GAC activation in transformation and tumor formation. We will determine whether the activation of this key metabolic enzyme is sufficient to drive transformation, or if its primary role is to work together with oncogenic signaling proteins to sustain the transformed state, using cell and mouse tumor models. These studies should provide new insights into how important metabolic changes in cancer cells are manifested, as well as identify novel targets that could be of real value by serving as sites of intervention against this disease.

Public Health Relevance

Cancer cells are characterized by changes in their metabolic program that are critical to the development and maintenance of their malignant state. By understanding the signals responsible for these metabolic changes, and how they might be modulated by drug-like molecules, we hope to obtain information that will highlight novel targets and strategies for therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM040654-26
Application #
8631563
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Dunsmore, Sarah
Project Start
1988-07-01
Project End
2018-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
26
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Cornell University
Department
Other Basic Sciences
Type
Schools of Veterinary Medicine
DUNS #
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Yoo, Sungsoo M; Latifkar, Arash; Cerione, Richard A et al. (2017) Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem 292:3947-3957
Katt, William P; Lukey, Michael J; Cerione, Richard A (2017) A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med Chem 9:223-243
Lukey, Michael J; Katt, William P; Cerione, Richard A (2017) Targeting amino acid metabolism for cancer therapy. Drug Discov Today 22:796-804
Yoo, Sungsoo M; Cerione, Richard A; Antonyak, Marc A (2017) The Arf-GAP and protein scaffold Cat1/Git1 as a multifaceted regulator of cancer progression. Small GTPases :1-9
French, Kinsley C; Antonyak, Marc A; Cerione, Richard A (2017) Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol 67:48-55
Feng, Qiyu; Zhang, Chengliang; Lum, David et al. (2017) A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun 8:14450
Stalnecker, Clint A; Erickson, Jon W; Cerione, Richard A (2017) Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators. J Biol Chem 292:6095-6107
Cluntun, Ahmad A; Lukey, Michael J; Cerione, Richard A et al. (2017) Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer 3:169-180
Desrochers, Laura M; Bordeleau, Fran├žois; Reinhart-King, Cynthia A et al. (2016) Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 7:11958
Antonyak, Marc A; Cerione, Richard A (2016) The distinct traits of extracellular vesicles generated by transformed cells. Small GTPases :1-6

Showing the most recent 10 out of 83 publications