The programmatic goals of our work supported by GM040654 have been to elucidate novel biological activities triggered by the EGFR- and/or ErbB2-Rho GTPase signaling axes critical in the development and maintenance of the transformed phenotype. These efforts have involved a combination of biochemical, cell biological, and structural approaches, and more recently mouse models. Recent work has focused on our discovery of an exciting signaling outcome in cancer cells that results in the activation of a key metabolic enzyme, glutaminase C (GAC), which catalyzes the hydrolysis of glutamine to glutamate plus ammonia. This represents a critical step for elevating glutamine metabolism, which together with changes in glycolysis (the """"""""Warburg effect""""""""), is now widely recognized to be essential for malignant transformation. Thus, understanding the regulatory mechanisms responsible for triggering these metabolic changes is of great interest to the cancer biology and pharmaceutical communities. Given its important role in glutamine metabolism, GAC is likely to be regulated in a number of biological contexts. In this renewal application, we will focus on how GAC is activated in breast cancer cells and its consequences for satisfying their """"""""glutamine addiction"""""""" and the development of the malignant state. We also will delineate the mechanisms of action of a novel group of allosteric GAC inhibitors that we recently discovered. They were responsible for highlighting the connections between different signaling proteins and glutamine metabolism, and thus potentially offer new therapeutic strategies for blocking cancer progression. These efforts will be pursued through the following lines of investigation: 1) Defining the phosphorylation event(s) that leads to GAC activation in breast cancer cells. We will identify the protein kinase(s) involved and the essential phosphorylation site(s) responsible for triggering GAC activation in breast cancer cell lines as well as in cells isolated from human breast tumor samples. 2) Determining the mechanistic basis for a new class of allosteric inhibitors that block GAC activation. We will establish how a newly identified allosteric inhibitor of GAC called 968, and related compounds, bind to the enzyme and block its activation. In particular, we want to determine whether this class of inhibitors binds preferentialy to the inactive state of GAC and/or blocks the ability of GAC to be phosphorylated and thus prevents a key step in its activation. 3) Determining the role of GAC activation in transformation and tumor formation. We will determine whether the activation of this key metabolic enzyme is sufficient to drive transformation, or if its primary role is to work together with oncogenic signaling proteins to sustain the transformed state, using cell and mouse tumor models. These studies should provide new insights into how important metabolic changes in cancer cells are manifested, as well as identify novel targets that could be of real value by serving as sites of intervention against this disease.

Public Health Relevance

Cancer cells are characterized by changes in their metabolic program that are critical to the development and maintenance of their malignant state. By understanding the signals responsible for these metabolic changes, and how they might be modulated by drug-like molecules, we hope to obtain information that will highlight novel targets and strategies for therapeutic intervention.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Dunsmore, Sarah
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
Other Basic Sciences
Schools of Veterinary Medicine
United States
Zip Code
Singh, Garima; Zhang, Jingwen; Ma, Yilun et al. (2016) The Different Conformational States of Tissue Transglutaminase Have Opposing Affects on Cell Viability. J Biol Chem 291:9119-32
Druso, Joseph E; Endo, Makoto; Lin, Miao-Chong Joy et al. (2016) An Essential Role for Cdc42 in the Functioning of the Adult Mammary Gland. J Biol Chem 291:8886-95
Kreger, Bridget T; Dougherty, Andrew L; Greene, Kai Su et al. (2016) Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem 291:19774-85
Desrochers, Laura M; Antonyak, Marc A; Cerione, Richard A (2016) Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology. Dev Cell 37:301-9
Li, Yunxing; Erickson, Jon W; Stalnecker, Clint A et al. (2016) Mechanistic Basis of Glutaminase Activation: A KEY ENZYME THAT PROMOTES GLUTAMINE METABOLISM IN CANCER CELLS. J Biol Chem 291:20900-20910
Desrochers, Laura M; Bordeleau, François; Reinhart-King, Cynthia A et al. (2016) Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun 7:11958
Lukey, Michael J; Greene, Kai Su; Erickson, Jon W et al. (2016) The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nat Commun 7:11321
Stalnecker, Clint A; Ulrich, Scott M; Li, Yunxing et al. (2015) Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad Sci U S A 112:394-9
Choi, Hyong Woo; Tian, Miaoying; Song, Fei et al. (2015) Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Mol Med 21:526-35
Katt, William P; Antonyak, Marc A; Cerione, Richard A (2015) Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm 12:46-55

Showing the most recent 10 out of 69 publications