Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM040922-05
Application #
3298864
Study Section
Molecular Cytology Study Section (CTY)
Project Start
1990-07-01
Project End
1993-11-30
Budget Start
1991-12-01
Budget End
1992-11-30
Support Year
5
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Syracuse University
Department
Type
Schools of Arts and Sciences
DUNS #
City
Syracuse
State
NY
Country
United States
Zip Code
13210
Soshnev, Alexey A; Josefowicz, Steven Z; Allis, C David (2018) Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome. Mol Cell 69:533
Noh, Kyung-Min; Wang, Haibo; Kim, Hyunjae R et al. (2018) Engineering of a Histone-Recognition Domain in Dnmt3a Alters the Epigenetic Landscape and Phenotypic Features of Mouse ESCs. Mol Cell 69:533
Sabari, Benjamin R; Zhang, Di; Allis, C David et al. (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90-101
Li, Yuanyuan; Sabari, Benjamin R; Panchenko, Tatyana et al. (2016) Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Mol Cell 62:181-193
Noh, Kyung-Min; Allis, C David; Li, Haitao (2016) Reading between the Lines: ""ADD""-ing Histone and DNA Methylation Marks toward a New Epigenetic ""Sum"". ACS Chem Biol 11:554-63
Allis, C David; Jenuwein, Thomas (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487-500
Josefowicz, Steven Z; Shimada, Miho; Armache, Anja et al. (2016) Chromatin Kinases Act on Transcription Factors and Histone Tails in Regulation of Inducible Transcription. Mol Cell 64:347-361
Xiong, Xiaozhe; Panchenko, Tatyana; Yang, Shuang et al. (2016) Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat Chem Biol 12:1111-1118
Soshnev, Alexey A; Josefowicz, Steven Z; Allis, C David (2016) Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome. Mol Cell 62:681-94
Elsässer, Simon J; Noh, Kyung-Min; Diaz, Nichole et al. (2015) Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522:240-244

Showing the most recent 10 out of 44 publications