Transport proteins play a key role in the disposition, efficacy and toxicity of many drugs. Substantial advances have been made in the field of drug transport. However, the interplay of drugs, bile acids, and hepatic transport proteins in health and disease remains poorly defined. Understanding the factors that influence hepatic drug disposition is often critical to achieve desirable therapeutic outcomes. For example, patients with nonalcoholic steatohepatitis (NASH) show marked changes in hepatic bile acid composition and transporter expression, which may alter drug disposition and predispose NASH patients to treatment failure and/or toxicity. Drug- mediated inhibition of hepatic bile acid efflux is a mechanism of cholestatic drug-induced liver injury (DILI), a serious adverse reaction that frequently terminates development programs for new drug candidates. Although the major human transporters involved in hepatic bile acid efflux have been identified, to date this knowledge has not resulted in accurate predictions of DILI liability or patient susceptibility. The objective of this ongoing research program is to elucidate mechanisms and consequences of transporter-mediated changes in the hepatic disposition of anionic drugs/metabolites and bile acids, and to use this knowledge to predict therapeutic and adverse responses to medications. Research in the current funding period has established novel approaches using human sandwich-cultured hepatocytes to elucidate hepatic transporter function and mechanisms of altered drug/bile acid disposition. Importantly, characterization of phenotypic transporter probes now allows translation of cell-based research to the clinic. Our multidisciplinary translational research team is uniquely positioned to achieve the proposed aims by integrating multiple experimental approaches: clinical phenotypic probe studies, metabolomic profiling, pharmacophore and quantitative structure-activity relationship modeling, genetic analyses from the largest DILI DNA bank worldwide, transporter assays, and mechanistic modeling.
Aim 1 will test the hypothesis that clinically important alterations in drug exposure associated with NASH reflect hepatic transporter dysregulation;phenotypic transporter probes and changes in the serum bile acid metabolome, incorporated as a predictive correlate, will be evaluated.
In Aim 2, computational modeling will identify structural features of compounds associated with hepatic bile acid efflux transporter inhibition. Moreover, the functional impact of genetic variants in ABC transporters enriched in DILI patients will be assessed to test the hypothesis that polymorphisms increase DILI risk by affecting bile acid efflux transporter activity or susceptibiliy to drug inhibition.
Aim 3 will focus on development of novel strategies to predict DILI by incorporating drug-induced changes in bile acid disposition and the bile acid metabolome measured in human sandwich-cultured hepatocytes into a mechanistic, mathematical model. The proposed studies will advance knowledge of the interplay between drugs, bile acids and hepatic transporters, and enhance our capabilities to achieve desirable therapeutic outcomes in patients with hepatic transporter dysregulation.

Public Health Relevance

Hepatic transport proteins are influential in determining drug exposure, efficacy, and harmful side effects such as liver toxicity. These studies will provide new mechanistic information and predictive tools to address how disease, genetic variation, and drugs can cause changes that impact the handling of medications by the liver. This research will contribute to timely, more cost-effective development of safer medications with improved therapeutic outcomes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM041935-22
Application #
8760654
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Okita, Richard T
Project Start
1991-04-01
Project End
2018-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
22
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Yang, Kyunghee; Guo, Cen; Woodhead, Jeffrey L et al. (2016) Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci 105:443-59
Wells, Michael A; Vendrov, Kimberly C; Edin, Matthew L et al. (2016) Characterization of the Cytochrome P450 epoxyeicosanoid pathway in non-alcoholic steatohepatitis. Prostaglandins Other Lipid Mediat 125:19-29
Lu, Yang; Slizgi, Jason R; Brouwer, Kenneth R et al. (2016) Hepatocellular Disposition and Transporter Interactions with Tolvaptan and Metabolites in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos :
Guo, Cen; Yang, Kyunghee; Brouwer, Kenneth R et al. (2016) Prediction of Altered Bile Acid Disposition Due to Inhibition of Multiple Transporters: An Integrated Approach Using Sandwich-Cultured Hepatocytes, Mechanistic Modeling, and Simulation. J Pharmacol Exp Ther 358:324-33
Slizgi, Jason R; Lu, Yang; Brouwer, Kenneth R et al. (2016) Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury? Toxicol Sci 149:237-50
Yang, Kyunghee; Pfeifer, Nathan D; Köck, Kathleen et al. (2015) Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther 353:415-23
Ferslew, Brian C; Xie, Guoxiang; Johnston, Curtis K et al. (2015) Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Dig Dis Sci 60:3318-28
Brouwer, K L R; Aleksunes, L M; Brandys, B et al. (2015) Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group. Clin Pharmacol Ther 98:266-87
Welch, Matthew A; Köck, Kathleen; Urban, Thomas J et al. (2015) Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos 43:725-34
Ferslew, B C; Johnston, C K; Tsakalozou, E et al. (2015) Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther 97:419-27

Showing the most recent 10 out of 91 publications