Our long term goal is to understand early vertebrate development at the molecular level. We study the problem in the frog Xenopus, which produces large numbers of eggs that are readily manipulated by microinjection and microsurgery. A combination of experimental embryology and molecular xmanipulation provides methods to understand the roles of specific genes and signaling pathways in elaborating the structure of the embryo. Most of the paradigms for development of vertebrate embryos have come first from work with amphibians, and many of the signaling activities were first analyzed using amphibian embryos. Gain of function experiments using mRNA injection, and loss of function using Morpholino oligonucleotides have provided insights into the mechanisms that underlie tissue differentiation and morphogenesis. During previous grant periods, we have used expression cloning to identify potent signaling and signal transduction activities that contribute to embryonic development. In screens for embryonic activities that alter neural patterning we identified several RNA regulators that show specific effects in both gain of function and loss of function experiments. In the next grant period, we will analyze selected RNA binding and pre-mRNA splice regulating activities that show such highly specific effects on development, and will therefore gain new insight into the selective effect of these proteins on specific splicing choices. The control of alternative pre- mRNA splicing has emerged as an important mechanism in gene control, and recent methods allow a global analysis of changes in splicing that are directed by specific proteins. We will apply these methods in Xenopus to understand how these proteins regulate splice choices, and thereby resolve the previously unknown function of these splicing regulators in splicing choices.

Public Health Relevance

Mapping of mutations that cause human diseases showed that many mutations are found in the conserved splicing junctions or branchpoint sequences of precursors to protein coding messenger RNAs, rather than in the protein coding sequence of the mRNA. It is therefore crucially important to understand the mechanisms that regulate the use of splicing signals, in order to understand the susceptibility to and etiology of diseases, as well as to devise therapies for such disease. This proposal will advance our understanding of splicing regulation using the model vertebrate organism, Xenopus, which affords technical advantages in manipulating splicing regulators, and studying the consequences of this manipulation.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Hoodbhoy, Tanya
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Schools of Arts and Sciences
United States
Zip Code
Plouhinec, Jean-Louis; Roche, Daniel D; Pegoraro, Caterina et al. (2014) Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol 386:461-72
Chung, Hyeyoung A; Medina-Ruiz, Sofia; Harland, Richard M (2014) Sp8 regulates inner ear development. Proc Natl Acad Sci U S A 111:6329-34
Young, John J; Kjolby, Rachel A S; Kong, Nikki R et al. (2014) Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. Development 141:1683-93
Song, Rui; Walentek, Peter; Sponer, Nicole et al. (2014) miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510:115-20
Peyrot, Sara M; Wallingford, John B; Harland, Richard M (2011) A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. Dev Biol 352:254-66
Dichmann, Darwin S; Harland, Richard M (2011) Nkx6 genes pattern the frog neural plate and Nkx6.1 is necessary for motoneuron axon projection. Dev Biol 349:378-86
Harland, Richard M; Grainger, Robert M (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27:507-15
Peyrot, Sara M; Martin, Benjamin L; Harland, Richard M (2010) Lymph heart musculature is under distinct developmental control from lymphatic endothelium. Dev Biol 339:429-38
Lee, Jen-Yi; Harland, Richard M (2010) Endocytosis is required for efficient apical constriction during Xenopus gastrulation. Curr Biol 20:253-8
Maczkowiak, Frederique; Mateos, Stephanie; Wang, Estee et al. (2010) The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. Dev Biol 340:381-96

Showing the most recent 10 out of 23 publications