The plant hormone auxin is involved in virtually all aspects of plant growth and development. Remarkably, auxin exerts its affects over a broad concentration range. At the cellular level, auxin acts to regulate cell expansion, cell division, ad cell fate. One of the most interesting and challenging questions in plant biology is how this simple molecule elicits such a complex set of responses. We have focused on auxin regulation of transcription. Over the years, we have shown that auxin acts by stimulating the degradation of a family of transcriptional repressors called the Aux/IAA proteins, through the action of the ubiquitin protein ligase SCFTIR1/AFB. During the last grant period we demonstrated that auxin is perceived by a co-receptor consisting of TIR1 or an AFB protein plus an Aux/IAA protein. Importantly, different co-receptor pairs differ in their affinity for auxin. The existence of high nd low affinity co-receptors dramatically enhances the dynamic range of the hormone and may contribute to the complexity of auxin responses. In addition, our recent work led to the discovery that the chaperone HSP90 and co-chaperone SGT1 are involved in TIR1 function, and that auxin response in the hypocotyl or seedling stem, is facilitated by a positive feedback loop that involves a family of proteins called the PREs. The long-term goals of this proposal are to determine the molecular basis of auxin signaling.
Our specific aims are to 1) test the biological significance of the auxin co-receptor model, 2) to investigate the role of HSP90 and SGT1 in SCFTIR1 function, 3) to characterize the PRE positive feedback loop in auxin-regulated hypocotyl elongation. These studies address a number of key issues in cellular regulation and will have important implications for human health. The ubiquitin pathway and the SCFs in particular are involved in diverse disease processes including numerous cancers. Because SCFTIR1 is one of the best- characterized E3 complexes in any organism, this work provides a unique opportunity to advance our understanding of this critical aspect of human disease.

Public Health Relevance

Protein homeostasis is a central aspect of cellular regulation. Defects in pathways that mediate protein stability and degradation including the chaperones and the ubiquitin proteasome pathway contribute to many disease processes including cancers. This study will advance our understanding of the protein homeostasis in cell function.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Maas, Stefan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Arts and Sciences
La Jolla
United States
Zip Code
Lavy, Meirav; Prigge, Michael J; Tigyi, Kristof et al. (2012) The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling. Development 139:1115-24
Terrile, Maria C; Paris, Ramiro; Calderon-Villalobos, Luz I A et al. (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. Plant J 70:492-500
Vernoux, Teva; Brunoud, Geraldine; Farcot, Etienne et al. (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508
del Pozo, Juan C; Dharmasiri, Sunethra; Hellmann, Hanjo et al. (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell 14:421-33
Gray, William M; Hellmann, Hanjo; Dharmasiri, Sunethra et al. (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell 14:2137-44
Nagpal, P; Walker, L M; Young, J C et al. (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563-74
del Pozo, J C; Estelle, M (1999) The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. Proc Natl Acad Sci U S A 96:15342-7