The inducible nitric oxide synthase (iNOS) is upregulated diffusely during sepsis and clearly contributes to hemodynamic instability and organ injury during septic shock. However, in stark contrast to the damaging effects of iNOS in many tissues, in the liver upregulation of iNOS has a protective function. Sustained, high-level iNOS expression has no toxic effects on hepatocytes, and even low-level expression is protective. We now hypothesize that upregulation of iNOS in the liver during acute inflammatory states (i.e., sepsis) is part of a protective response that limits the toxicity of pro-inflammatory mediators, including TNFalpha. We have shown that NO can directly inhibit TNFalpha-induced signaling pathways leading to hepatocyte death. By activating soluble guanylate cyclase, NO inhibits the activation of the caspase cascade by TNFalpha, and via S-nitrosylation NO directly inhibits caspase protease activity. We have also shown that NO can regulate gene expression in hepatocytes to promote cell survival. We will now pursue the mechanistic basis of these observations in three aims.
AIM I : To determine how NO/cGMP/G-kinase inhibits TNFalpha signaling in hepatocytes. Experiments under Aim I will define the level at which cGMP and the cGMP-dependent kinase inhibit TNFalpha signaling in hepatocytes. As part of this objective, we will identify the substrates for G-kinase that mediate the protective actions.
AIM II : To determine the pathways leading to efficient S-nitrosylation of caspase in hepatocytes.
Under Aim II, we will identify the factors that lead to efficient S-nitrosylation of caspases in hepatocytes. Factors that are likely to be important and that will be tested include the levels of glutathione and intracellular iron as well as the ratio of NO to O2-.
AIM III : To identify iNOS-induced protective genes in hepatocytes.
Under Aim III, we will complete our analysis of NO-regulated genes in hepatocytes using differential display. We have already identified 11 candidate genes, and we will characterize genes that contribute to the hepatoprotective actions of iNOS. Upon completion of the three aims, it is expected that we will have an understanding of the factors that render hepatocytes less susceptible to injury and dysfunction during sepsis. By defining the protective mechanisms in hepatocytes, we will gain insights into the molecular mechanisms that lead to cellular toxicity in sepsis in susceptible organs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM044100-11
Application #
6179662
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Somers, Scott D
Project Start
1990-04-01
Project End
2003-03-31
Budget Start
2000-04-01
Budget End
2001-03-31
Support Year
11
Fiscal Year
2000
Total Cost
$231,398
Indirect Cost
Name
University of Pittsburgh
Department
Surgery
Type
Schools of Medicine
DUNS #
053785812
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Deng, Wenjun; Zhu, Shan; Zeng, Ling et al. (2018) The Circadian Clock Controls Immune Checkpoint Pathway in Sepsis. Cell Rep 24:366-378
Li, Wenbo; Zhang, Wei; Deng, Meihong et al. (2018) Stearoyl Lysophosphatidylcholine Inhibits Endotoxin-Induced Caspase-11 Activation. Shock 50:339-345
Lei, Zhao; Deng, Meihong; Yi, Zhongjie et al. (2018) cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING. Am J Physiol Gastrointest Liver Physiol 314:G655-G667
Chen, Ruochan; Zhu, Shan; Fan, Xue-Gong et al. (2018) High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 67:1823-1841
Wang, Ronghua; Li, Yawen; Tsung, Allan et al. (2018) iNOS promotes CD24+CD133+ liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc Natl Acad Sci U S A 115:E10127-E10136
Zhou, Hui; Deng, Meihong; Liu, Yingjie et al. (2018) Platelet HMGB1 is required for efficient bacterial clearance in intra-abdominal bacterial sepsis in mice. Blood Adv 2:638-648
Zeng, Ling; Kang, Rui; Zhu, Shan et al. (2017) ALK is a therapeutic target for lethal sepsis. Sci Transl Med 9:
Xu, Hui; Turnquist, Heth R; Hoffman, Rosemary et al. (2017) Role of the IL-33-ST2 axis in sepsis. Mil Med Res 4:3
Wang, Qingde; Li, Xiaoni; Qi, Ruofan et al. (2017) RNA Editing, ADAR1, and the Innate Immune Response. Genes (Basel) 8:
Davila-Gonzalez, Daniel; Chang, Jenny C; Billiar, Timothy R (2017) NO and COX2: Dual targeting for aggressive cancers. Proc Natl Acad Sci U S A 114:13591-13593

Showing the most recent 10 out of 60 publications