The inability of these present therapies to mitigate the devastating effects of sepsis indicates that more knowledge of the patho-physiology of septic condition is needed not only if we are to develop better, more effective interventions but to identify for whom/ when these interventions will be most efficacious. Our laboratory along with several others has had sustained interest in not only how sepsis, as produced by cecal ligation and puncture (CLP), differentially effects the immune response observed in divergent tissue sites, but to what extent these aberrations in myeloid and/or lymphoid cell functions can contribute to changes in septic morbidity/ mortality. Importantly, we have observed that CLP induces marked changes in 3 key regulatory T- cell populations, i.e., -T-, CD4+CD25+ native T-regulatory -, and NKT-cells, within the spleen, liver and intestine, which we have found to either have the capacity to induced marked immune suppression or have an affect on the animal's capacity to ward off septic mortality. Unlike, the classic -CD4 T-cells these various `innate regulatory T-cell'populations share a unique capacity to respond rapidly to inflam-matory, infectious and/or wound associate stimuli, i.e., innate activation. Thus, they have the capacity to serve as sentinels of tissue homeostasis, potentially regulating the response to infection and/or injury. Here we propose to test the central hypothesis that it is the differential activation of resident tissue NKT-cells (via inhibitory [i.e., PD- 1:PD-L1/L2] and/or stimulatory receptor[s] and/or inflammatory mediator[s]), that directly drives not only the classic immune cell (i.e., -CD4 T-cell, macrophage [M] and/or dendritic cell [DC]), but also local organ dysfunctions. To test this, the following Aims are proposed.
Aim 1 : We will determine the capacity of NKT-cell deficiency to alter the organ function, bacterial clearance, wound healing and/or classic immune cell responsiveness during sepsis.
Aim 2 : We will determine not only if resident tissue NKT-cells and/or -CD4 T-cells exhibit changes of various inhibitory (PD-1, PD-L1/L2) or receptors and/or are sources of pro (IL-2, IFN-)-/ anti (IL-10, TGF-)-inflammatory cytokines, but also what roles these agents play in the development of changes in these `innate regulatory T-cells'in sepsis.
Aim 3 : We will delineate the extent to which the expression of signaling molecules, i.e., STAT1/ 4/ 6, p38 MAPK, SOCS1/ 3, or SHP-2 alter the frequency/ functions of either resident tissue NKT-cells and/or their expression of PD-1, PD-L1 or PD-L2.
Aim 4 : We will, alternatively, examine the degree to which resident tissue M, DC and/or their expression of PD-1, PD-L1 or PD-L2 regulate sepsis-induced changes seen in NKT-cells. It is our belief that the results of these studies will provide information that not only will allow us to better understand the pathobiology of sepsis induced immune dysfunction, but also its attenuation.

Public Health Relevance

Despite the use of specific antibiotics, aggressive operative intervention, nutritional support and recently, antibodies against endotoxin, activated protein C and anti-cytokine therapies in septic patients, multiple organ failure continues to be a major cause of morbidity/ mortality in the surgical intensive care unit. Thus, it is essential to determine in depth the mechanism(s) underlying the patho-physiology of sepsis so that more appropriate therapeutic interventions can be designed. We propose to determine the impact of an """"""""innate regulatory T cell"""""""" population, i.e., natural killer T-cells, on the development of immune, organ dysfunction/injury and death resulting from sepsis. The contribution of these cells'to the development of both septic morbidity and mortality will be examined in the setting of experimental sepsis using genetically altered mice as well as drug interventions directed at genes or mediators thought to be involved in the regulation of these cells. We believe that these studies will provide new and useful mechanistic information concerning the patho-biology of sepsis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM046354-17
Application #
7997181
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Dunsmore, Sarah
Project Start
1991-09-30
Project End
2012-11-30
Budget Start
2010-12-01
Budget End
2011-11-30
Support Year
17
Fiscal Year
2011
Total Cost
$329,467
Indirect Cost
Name
Rhode Island Hospital
Department
Type
DUNS #
075710996
City
Providence
State
RI
Country
United States
Zip Code
02903
Biron, Bethany M; Chung, Chun-Shiang; Chen, Yaping et al. (2018) PAD4 Deficiency Leads to Decreased Organ Dysfunction and Improved Survival in a Dual Insult Model of Hemorrhagic Shock and Sepsis. J Immunol 200:1817-1828
Chun, Tristen T; Chung, Chun-Shiang; Fallon, Eleanor A et al. (2018) Group 2 Innate Lymphoid Cells (ILC2s) Are Key Mediators of the Inflammatory Response in Polymicrobial Sepsis. Am J Pathol 188:2097-2108
Fallon, Eleanor A; Biron-Girard, Bethany M; Chung, Chun-Shiang et al. (2018) A novel role for coinhibitory receptors/checkpoint proteins in the immunopathology of sepsis. J Leukoc Biol :
Cheng, Tingting; Bai, Jianwen; Chung, Chun-Shiang et al. (2018) Herpes Virus Entry Mediator (HVEM) Expression Promotes Inflammation/ Organ Injury in Response to Experimental Indirect-Acute Lung Injury. Shock :
Biron, Bethany M; Chung, Chun-Shiang; O'Brien, Xian M et al. (2017) Cl-Amidine Prevents Histone 3 Citrullination and Neutrophil Extracellular Trap Formation, and Improves Survival in a Murine Sepsis Model. J Innate Immun 9:22-32
Young, John S; Heffernan, Daithi S; Chung, Chun-Shiang et al. (2016) Effect of PD-1: PD-L1 in Invariant Natural Killer T-Cell Emigration and Chemotaxis Following Sepsis. Shock 45:534-9
Wang, Fei; Huang, Xin; Chung, Chun-Shiang et al. (2016) Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis. Am J Physiol Gastrointest Liver Physiol 311:G237-45
Cheng, Tingting; Bai, Jianwen; Chung, Chun-Shiang et al. (2016) Enhanced Innate Inflammation Induced by Anti-BTLA Antibody in Dual Insult Model of Hemorrhagic Shock/Sepsis. Shock 45:40-9
Biron, Bethany M; Ayala, Alfred; Lomas-Neira, Joanne L (2015) Biomarkers for Sepsis: What Is and What Might Be? Biomark Insights 10:7-17
Hutchins, Noelle A; Unsinger, Jacqueline; Hotchkiss, Richard S et al. (2014) The new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol Med 20:224-33

Showing the most recent 10 out of 45 publications