Prokaryotic diacylglycerol kinase (DAGK) is an integral membrane protein (IMP) that functions as a 40 kDa homotrimer with 9 transmembrane helices. DAGK plays an essential role in the physiology of many bacteria and is a potential target for antimicrobial agents. While it is a structurally unique kinase, DAGK may represent an entire family of uncharacterized membrane proteins and is also an ideal system for mechanistic studies of membrane-integral biocatalysis. When correctly folded, DAGK is generally very stable. However, numerous mutant forms of this protein exhibit a tendency to misfold into kinetically-trapped conformations. DAGK is therefore an excellent system in which to examine the biophysical properties underlying membrane protein folding and misfolding, a matter of pressing medical relevance.
The specific aims of the upcoming phase of this project are:
Aim 1 : Conduct solution NMR-based structural studies. (A) Enhance the resolution of our nearly completed NMR-based 3-D structure of DAGK by collecting additional data restraints. (B) Use NMR methods to map the nucleotide and diacylglycerol substrate binding sites. (C) Determine whether DAGK undergoes conformational changes on formation of binary and/or ternary complexes with substrates. This will include determination of the structure of DAGK's ternary complex with diacylglycerol and a non- hydrolyzable ATP analog.
Aim 2 : Conduct studies of folding and misfolding. (A) Follow up on key recent observations regarding DAGK folding and misfolding under conditions of in vitro denaturant-to-model membrane folding assays. (B) Identity factors that lead to DAGK misfolding after the point in the folding pathway at which membrane integration has been attained.
Aim 3 : Conduct mechanistic studies to determine the specific roles played by DAGK's active site residues in substrate binding and phosphoryl transfer. Of particular interest is to correlate the mechanistic insight from this aim with structural information from Aim 1 to determine how DAGK selectively binds its lipid substrates, diacylglycerol and phosphatidic acid, without competitive inhibition by other membrane lipids.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM047485-18
Application #
7772255
Study Section
Special Emphasis Panel (ZRG1-BCMB-B (02))
Program Officer
Chin, Jean
Project Start
1992-05-01
Project End
2011-02-28
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
18
Fiscal Year
2010
Total Cost
$320,552
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Biochemistry
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Cymer, Florian; Sanders, Charles R; Schneider, Dirk (2013) Analyzing oligomerization of individual transmembrane helices and of entire membrane proteins in E. coli: A hitchhiker's guide to GALLEX. Methods Mol Biol 932:259-76
Van Horn, Wade D; Sanders, Charles R (2012) Prokaryotic diacylglycerol kinase and undecaprenol kinase. Annu Rev Biophys 41:81-101
Sakakura, Masayoshi; Hadziselimovic, Arina; Wang, Zhen et al. (2011) Structural basis for the Trembler-J phenotype of Charcot-Marie-Tooth disease. Structure 19:1160-9
Koehler, Julia; Meiler, Jens (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog Nucl Magn Reson Spectrosc 59:360-89
Kelley, K Danielle; Olive, Lorenzo Q; Hadziselimovic, Arina et al. (2010) Look and see if it is time to induce protein expression in Escherichia coli cultures. Biochemistry 49:5405-7
Van Horn, Wade D; Beel, Andrew J; Kang, Congbao et al. (2010) The impact of window functions on NMR-based paramagnetic relaxation enhancement measurements in membrane proteins. Biochim Biophys Acta 1798:140-9
Koehler, Julia; Sulistijo, Endah S; Sakakura, Masayoshi et al. (2010) Lysophospholipid micelles sustain the stability and catalytic activity of diacylglycerol kinase in the absence of lipids. Biochemistry 49:7089-99
Koehler, Julia; Woetzel, Nils; Staritzbichler, René et al. (2009) A unified hydrophobicity scale for multispan membrane proteins. Proteins 76:13-29
Kim, Hak Jun; Howell, Stanley C; Van Horn, Wade D et al. (2009) Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. Prog Nucl Magn Reson Spectrosc 55:335-360
Van Horn, Wade D; Kim, Hak-Jun; Ellis, Charles D et al. (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726-9

Showing the most recent 10 out of 33 publications