Centrosomes are the organelles at mitotic spindle poles that organize microtubules essential for chromosome segregation. Assembly of nascent centrosomes is a tightly regulated process that occurs exactly once each cell cycle. Defects in this process can lead to centrosomal abnormalities, which are frequently observed in tumor cells and are thought to contribute to genetic instability, a hallmark of cellular transformation. Protein phosphorylation is a critical signal involved in centrosome assembly and function, though the molecular details are not well understood. Using the S. cerevisiae centrosome (the Spindle Pole Body, SPB) as a model system, we will identify phosphorylation events that are important to the controlled assembly of a functional organelle. Key events will be tested for conservation in vertebrate cells. The first specific aim of this proposal focuses on the effects phosphorylation has on an important regulator of centrosome duplication, the protein kinase Mps1. Mps1 is tightly regulated through the cell cycle;it is subject to ubiquitin mediated proteolysis by the APC, and stabilized by cyclin dependant kinase phosphorylation. We will test whether phosphorylation by Cdk and autophosphorylation directly prevents ubiquitination in vitro, and assay the in vivo consequences of Mps1 mutated at these sites. The second specific aim is designed to obtain a comprehensive map of the phosphorylation state of the SPB. Phosphorylation sites will be identified on purified SPBs by mass spectrometry. By isolating SPBs from synchronized cells, we will monitor changes in phosphorylation that occur at particular points in the cell cycle. In addition, we will phosphorylate isolated SPBs with candidate kinases to gain an understanding of their contribution to the overall phosphorylation state of the SPB. The final specific aim focuses on the conserved gamma-tubulin complex. Although vertebrate centrosomes and yeast SPBs are structurally distinct, components involved in the nucleation of microtubules are conserved. Once in vivo and in vitro gamma-tubulin complex phosphorylation sites are mapped, we will determine the effects of mutations in these sites on cells, and on the ability of the complex to nucleate microtubules in vitro. By understanding the role phosphorylation plays at centrosomes, we will gain important insights into how centrosome assembly is coordinated with the cell cycle, and how the fidelity of mitosis is maintained.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM051312-16
Application #
7784450
Study Section
Cell Structure and Function (CSF)
Program Officer
Hamlet, Michelle R
Project Start
1994-08-01
Project End
2011-12-31
Budget Start
2010-04-01
Budget End
2011-12-31
Support Year
16
Fiscal Year
2010
Total Cost
$359,497
Indirect Cost
Name
University of Colorado at Boulder
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Burns, Shannon; Avena, Jennifer S; Unruh, Jay R et al. (2015) Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. Elife 4:
Peng, Yutian; Moritz, Michelle; Han, Xuemei et al. (2015) Interaction of CK1? with ?TuSC ensures proper microtubule assembly and spindle positioning. Mol Biol Cell 26:2505-18
Avena, Jennifer S; Burns, Shannon; Yu, Zulin et al. (2014) Licensing of yeast centrosome duplication requires phosphoregulation of sfi1. PLoS Genet 10:e1004666
Winey, Mark; Meehl, Janet B; O'Toole, Eileen T et al. (2014) Conventional transmission electron microscopy. Mol Biol Cell 25:319-23
Nannas, Natalie J; O'Toole, Eileen T; Winey, Mark et al. (2014) Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol Biol Cell 25:4034-48
Nazarova, Elena; O'Toole, Eileen; Kaitna, Susi et al. (2013) Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly. Mol Biol Cell 24:3238-50
Rock, Jeremy M; Lim, Daniel; Stach, Lasse et al. (2013) Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 340:871-5
Choy, John S; O'Toole, Eileen; Schuster, Breanna M et al. (2013) Genome-wide haploinsufficiency screen reveals a novel role for ?-TuSC in spindle organization and genome stability. Mol Biol Cell 24:2753-63
Meyer, Regis E; Kim, Seoyoung; Obeso, David et al. (2013) Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339:1071-4
Winey, Mark; Bloom, Kerry (2012) Mitotic spindle form and function. Genetics 190:1197-224

Showing the most recent 10 out of 54 publications