Signaling by the mTOR protein kinase complex 1 (mTORC1) plays a major role in proper differentiation and development, and in regulating normal cellular homeostasis. When improperly regulated this signaling systems has been linked to a variety of diseases associated with altered metabolism such as aging, diabetes, obesity, immune disorders, neurodegeneration, diseased muscle physiology, benign tumor syndromes and malignant cancers. The overall goals of the previous funding period were to begin to define at a molecular and biochemical level how mTOR signaling controls cell growth through the regulation of protein synthesis, to initiate efforts to define the signaling landscape (the mTORC1 phospho-proteome) and biological processes regulated downstream of mTORC1, and to develop high-throughput, RNAi-based screens to extensively evaluate how mTORC1 is regulated by growth factors, oncogenes, tumor suppressors, nutrients, stress and cellular energy status. Our continuing success on all fronts has provided the foundation for the current proposal. From our innovative approaches and proposed research, we will illuminate previously unknown roles of C3G and various GEFs in mTORC1 activation (aim #1);define how and why AAs regulate the Ran gradient and the nuclear entry of Rags and/or mTORC1 (aim #2);and identify new molecular details of how mTORC1 regulates mRNA biogenesis (aim #3). Through these aims, we will identify and characterize new upstream regulators and downstream effectors of mTORC1, further explaining how improper regulation of mTORC1 contributes to a variety of human diseases. Furthermore, our research will result in the identification of new biomarkers and potential therapeutic targets needed for detection and intervention in human diseases resulting from improper mTOR signaling.

Public Health Relevance

With the vast amount of new data we have generated regarding the signaling landscape surrounding the mTORC1 protein kinase, we have placed ourselves in the unique position to uncover and understand at a biochemical and molecular level new regulatory processes, new biomarkers and new potential targets for drug discovery, that are needed for personalized therapeutic intervention in the many diseases, such as cancer, diabetes, and neurodegenerative disorders, linked to improper mTORC1 signaling.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM051405-17
Application #
8243194
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Marino, Pamela
Project Start
1995-09-01
Project End
2016-01-31
Budget Start
2012-03-01
Budget End
2013-01-31
Support Year
17
Fiscal Year
2012
Total Cost
$616,204
Indirect Cost
$249,472
Name
Harvard University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
He, Long; Gomes, Ana P; Wang, Xin et al. (2018) mTORC1 Promotes Metabolic Reprogramming by the Suppression of GSK3-Dependent Foxk1 Phosphorylation. Mol Cell 70:949-960.e4
Schild, Tanya; Low, Vivien; Blenis, John et al. (2018) Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. Cancer Cell 33:347-354
Gomes, Ana P; Schild, Tanya; Blenis, John (2017) Adding Polyamine Metabolism to the mTORC1 Toolkit in Cell Growth and Cancer. Dev Cell 42:112-114
Yoon, Sang-Oh; Shin, Sejeong; Karreth, Florian A et al. (2017) Focal Adhesion- and IGF1R-Dependent Survival and Migratory Pathways Mediate Tumor Resistance to mTORC1/2 Inhibition. Mol Cell 67:512-527.e4
Lee, Gina; Zheng, Yuxiang; Cho, Sungyun et al. (2017) Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling. Cell 171:1545-1558.e18
Wada, Shogo; Neinast, Michael; Jang, Cholsoon et al. (2016) The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev 30:2551-2564
Li, Jing; Shin, Sejeong; Sun, Yang et al. (2016) mTORC1-Driven Tumor Cells Are Highly Sensitive to Therapeutic Targeting by Antagonists of Oxidative Stress. Cancer Res 76:4816-27
Li, Jing; Csibi, Alfredo; Yang, Sun et al. (2015) Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci U S A 112:E21-9
Shin, Sejeong; Buel, Gwen R; Wolgamott, Laura et al. (2015) ERK2 Mediates Metabolic Stress Response to Regulate Cell Fate. Mol Cell 59:382-98
Gomes, Ana P; Blenis, John (2015) A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Curr Opin Biotechnol 34:110-7

Showing the most recent 10 out of 34 publications