Accurate chromosome segregation is essential for the propagation of species and the viability of cells, and is driven by a complex microtubule-based structure called the spindle. Spindle organization and chromosome movement are driven by the concerted actions of microtubule-associated proteins (motor and non-motor) and the inherent dynamic properties of microtubules. Despite extensive knowledge of the proteins involved in spindle morphogenesis and chromosome movement, very little is known about how the accuracy of chromosome segregation is ensured during mitosis in mammalian cells. The purpose of the experiments proposed here is to combine biochemical methods and live cell imaging to identify the proteins and determine the mechanisms underlying the high fidelity of chromosome segregation during mitosis in human cells. Because chromosomes are linked to spindle microtubules through the kinetochore, a focus will be on defining the molecules and mechanisms that govern the dynamic attachment of spindle microtubules to kinetochores.
The specific aims of this research are to: 1) combine live cell imaging with quantitative chromosome segregation assays to define the mechanisms regulating kinetochore- microtubule attachment necessary for accurate chromosome segregation;2) use live cell imaging to examine how the spatial and temporal sequence of spindle assembly contributes to the accuracy of chromosome segregation;3) use biochemical methods to determine how the kinetochore-associated microtubule depolymerizing activity of the kinesin-13 protein Kif2b is regulated during mitosis;and 4) use live cell assays to determine the fate of human cells that mis-segregate chromosomes.

Public Health Relevance

Chromosome mis-segregation causes aneuploidy that causes birth defects and is commonly associated with advanced stage cancer. The goal of the experiments proposed here is to combine biochemical methods and live cell imaging to identify the proteins and determine the mechanisms underlying the high fidelity of chromosome segregation during mitosis in human cells. Data generated from this work will provide insight into mechanisms of aneuploidy in tumor cells and may reveal strategies for therapy of chromosomally unstable aneuploid tumors.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM051542-16
Application #
8223308
Study Section
Nuclear Dynamics and Transport (NDT)
Program Officer
Deatherage, James F
Project Start
1996-08-01
Project End
2013-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
16
Fiscal Year
2012
Total Cost
$418,058
Indirect Cost
$153,465
Name
Dartmouth College
Department
Biochemistry
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Bakhoum, Samuel F; Silkworth, William T; Nardi, Isaac K et al. (2014) The mitotic origin of chromosomal instability. Curr Biol 24:R148-9
Kleyman, Marianna; Kabeche, Lilian; Compton, Duane A (2014) STAG2 promotes error correction in mitosis by regulating kinetochore-microtubule attachments. J Cell Sci 127:4225-33
Kabeche, Lilian; Compton, Duane A (2013) Cyclin A regulates kinetochore microtubules to promote faithful chromosome segregation. Nature 502:110-3
Bakhoum, Samuel F; Compton, Duane A (2012) Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 122:1138-43
Hood, Emily A; Kettenbach, Arminja N; Gerber, Scott A et al. (2012) Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell 23:2264-74
Kabeche, Lilian; Compton, Duane A (2012) Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Curr Biol 22:638-44
Compton, Duane A (2011) Mechanisms of aneuploidy. Curr Opin Cell Biol 23:109-13
Thompson, Sarah L; Compton, Duane A (2011) Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc Natl Acad Sci U S A 108:17974-8
Bakhoum, Samuel F; Danilova, Olga V; Kaur, Prabhjot et al. (2011) Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clin Cancer Res 17:7704-11
Thompson, Sarah L; Compton, Duane A (2011) Chromosomes and cancer cells. Chromosome Res 19:433-44

Showing the most recent 10 out of 48 publications