The transcription machinery is the ultimate target of many signal transduction and developmental pathways and regulation of transcription is one of the key steps in control of cell growth, differentiation and development. Defects in transcription and its regulation directly contribute to human illnesses such as cancer, inflammation, heart disease, neurological disorders, and birth defects. The broad long-term objective of this proposal is to determine the mechanism of transcription initiation by eukaryotic RNA polymerase II. Understanding the molecular mechanisms of the transcription process will form the basis for understanding gene control and the action of transcription regulators, many of which modulate the activity of the transcription machinery at various points in the recruitment, initiation, and elongation steps.
The specific aims of this work will utilize biochemical, molecular, genetic, and structural methods to examine the mechanism of transcription initiation by S. cerevisiae RNA Pol II. Using biochemical methods we have developed for mapping the structural arrangement of large complexes, in conjunction with a purified transcription system, we will map the structure of the transcription machinery at intermediate stages of the transcription cycle: Preinitiation Complex, Open Complex, initiation site-scanning, initiation, and promoter escape. We will use yeast molecular genetics to test the significance of interactions observed in biochemical assays. Combined, our results will lead to a detailed model for the mechanism of transcription initiation by Pol II and the role of the general transcription factors in this process.

Public Health Relevance

The objective of this research is to understand the mechanism and regulation of transcription, the process of mRNA synthesis. Regulation of transcription is one of the key steps in control of cell growth, differentiation, and development, and defects in transcription directly contribute to many human illnesses. Understanding the mechanism of transcription and its regulation will form the basis for understanding the molecular defects in transcription disorders leading to many types of cancer, as well as heart disease, neurological disorders, and birth defects.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM053451-15
Application #
7806586
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Tompkins, Laurie
Project Start
1995-09-30
Project End
2013-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
15
Fiscal Year
2010
Total Cost
$653,721
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Donczew, Rafal; Hahn, Steven (2018) Mechanistic Differences in Transcription Initiation at TATA-Less and TATA-Containing Promoters. Mol Cell Biol 38:
Grünberg, Sebastian; Zentner, Gabriel E (2017) Genome-wide Mapping of Protein-DNA Interactions with ChEC-seq in Saccharomyces cerevisiae. J Vis Exp :
Grünberg, Sebastian; Zentner, Gabriel E (2017) Genome-wide characterization of Mediator recruitment, function, and regulation. Transcription 8:169-174
Warfield, Linda; Ramachandran, Srinivas; Baptista, Tiago et al. (2017) Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Mol Cell 68:118-129.e5
Baptista, Tiago; Grünberg, Sebastian; Minoungou, Nadège et al. (2017) SAGA Is a General Cofactor for RNA Polymerase II Transcription. Mol Cell 68:130-143.e5
Tomko, Eric J; Fishburn, James; Hahn, Steven et al. (2017) TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nat Struct Mol Biol 24:1139-1145
Fishburn, James; Galburt, Eric; Hahn, Steven (2016) Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II. J Biol Chem 291:13040-7
Grünberg, Sebastian; Henikoff, Steven; Hahn, Steven et al. (2016) Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. EMBO J 35:2435-2446
Warfield, Linda; Luo, Jie; Ranish, Jeffrey et al. (2016) Function of Conserved Topological Regions within the Saccharomyces cerevisiae Basal Transcription Factor TFIIH. Mol Cell Biol 36:2464-75
Fishburn, James; Tomko, Eric; Galburt, Eric et al. (2015) Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc Natl Acad Sci U S A 112:3961-6

Showing the most recent 10 out of 40 publications