Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM053720-02
Application #
2193123
Study Section
Molecular Biology Study Section (MBY)
Project Start
1995-09-30
Project End
2000-03-31
Budget Start
1996-04-01
Budget End
1997-03-31
Support Year
2
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Harvard University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Fan, Xiaochun; Lamarre-Vincent, Nathan; Wang, Qian et al. (2008) Extensive chromatin fragmentation improves enrichment of protein binding sites in chromatin immunoprecipitation experiments. Nucleic Acids Res 36:e125
Joshi, Amita A; Struhl, Kevin (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20:971-8
Cawley, Simon; Bekiranov, Stefan; Ng, Huck H et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499-509
Reid, Juliet L; Moqtaderi, Zarmik; Struhl, Kevin (2004) Eaf3 regulates the global pattern of histone acetylation in Saccharomyces cerevisiae. Mol Cell Biol 24:757-64
Geisberg, Joseph V; Struhl, Kevin (2004) Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. Mol Cell 14:479-89
Ng, Huck Hui; Xu, Rui-Ming; Zhang, Yi et al. (2002) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277:34655-7
Geisberg, Joseph V; Moqtaderi, Zarmik; Kuras, Laurent et al. (2002) Mot1 associates with transcriptionally active promoters and inhibits association of NC2 in Saccharomyces cerevisiae. Mol Cell Biol 22:8122-34
Ng, Huck Hui; Feng, Qin; Wang, Hengbin et al. (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16:1518-27
Proft, Markus; Struhl, Kevin (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307-17
Deckert, J; Struhl, K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21:2726-35

Showing the most recent 10 out of 11 publications