The Hox family of transcriptional regulators are homeodomain proteins that play important roles in many aspects of animal development and disease. For these proteins to perform their functions, they need to achieve the correct functional specificities in vivo. Using the fruit fly, Drosophila melanogaster, as the model system, this project builds on earlier work to better understand how these transcriptional regulators function in vivo. In previous work, results were obtained suggesting that Hox proteins, in conjunction with cofactors of the Extradenticle (Exd, Pbx in vertebrates) and Homothorax (Hth;Meis in vertebrates) families, achieve DNA binding specificity by reading a sequence-dependent DNA structure using residues in their homeodomains and nearby linker regions. A second set of findings demonstrated that some Hox proteins interact with these cofactors via multiple, partially redundant interaction motifs. Third, results were obtained showing that one Hox protein in Drosophila, Ultrabithorax (Ubx), modifies appendage morphologies, in particular, appendage size, by altering the levels and mobilities of diffusible morphogens such as Decapentaplegic (Dpp). Ubx executes these modfications in part by transcriptionally regulating two genes, master of thickveins (mtv) and dally in the developing appendage. Building on these results, the aims of this project are to 1) extend and generalize the Exd-dependent Hox specificity model, 2) determine the role of multiple Exd interaction motifs that are present in some Hox proteins, and 3) determine which of the targets identified previously in the control of appendage morphology by Ubx are directly regulated by this Hox protein. The approaches for all of these aims rely heavily on using a combination of Drosophila genetic tools and in vitro protein-DNA interaction assays. X-ray crystallography, to determine the three dimensional structures of some Hox-Exd-DNA ternary complexes, will also be employed. Public Health Relevance: Although first analyzed in the context of anterior-posterior patterning, there are a wealth of critical functions in animal development from motor neuron specification to organogenesis to stem cell maintenance that are now appreciated to be controlled by Hox genes. Equally important and well studied are the roles that Hox genes and their cofactors play in human birth defects, such as limb malformations, and some cancers, such as leukemia. Thus, a mechanistic understanding of how these transcription factors regulate their target genes will impact our understanding of many aspects of developmental and disease biology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM054510-18
Application #
7792475
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Haynes, Susan R
Project Start
1992-08-01
Project End
2012-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
18
Fiscal Year
2010
Total Cost
$350,619
Indirect Cost
Name
Columbia University (N.Y.)
Department
Biochemistry
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Kribelbauer, Judith F; Laptenko, Oleg; Chen, Siying et al. (2017) Quantitative Analysis of the DNA Methylation Sensitivity of Transcription Factor Complexes. Cell Rep 19:2383-2395
Merabet, Samir; Mann, Richard S (2016) To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins. Trends Genet 32:334-47
Zhou, Tianyin; Shen, Ning; Yang, Lin et al. (2015) Quantitative modeling of transcription factor binding specificities using DNA shape. Proc Natl Acad Sci U S A 112:4654-9
Abe, Namiko; Dror, Iris; Yang, Lin et al. (2015) Deconvolving the recognition of DNA shape from sequence. Cell 161:307-18
O'Connell, Nichole E; Lelli, Katherine; Mann, Richard S et al. (2015) Asparagine deamidation reduces DNA-binding affinity of the Drosophila melanogaster Scr homeodomain. FEBS Lett 589:3237-41
Crocker, Justin; Abe, Namiko; Rinaldi, Lucrezia et al. (2015) Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160:191-203
Riley, Todd R; Slattery, Matthew; Abe, Namiko et al. (2014) SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol 1196:255-78
Agelopoulos, Marios; McKay, Daniel J; Mann, Richard S (2014) cgChIP: a cell type- and gene-specific method for chromatin analysis. Methods Mol Biol 1196:291-306
Shazman, Shula; Lee, Hunjoong; Socol, Yakov et al. (2014) OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites. Nucleic Acids Res 42:D167-71
Oh, Hyangyee; Slattery, Matthew; Ma, Lijia et al. (2014) Yorkie promotes transcription by recruiting a histone methyltransferase complex. Cell Rep 8:449-59

Showing the most recent 10 out of 31 publications