Metal ions such as Fe and Cu play an essential role in many cellular processes including energy production, biosynthesis and antioxidation. The key to their usefulness as enzyme cofactors lies in their ability to participate in electron transfer and to catalyze redox reactions. Yet this very chemistry imposes a stringent requirement to regulate the speciation, concentration and transport of cellular metal ions, since the free ions are themselves highly cytotoxic via Fenton mediated chemistry. Heme copper oxidases (HCOs) are classic examples of essential metalloproteins, and are utilized as the terminal electron acceptors in many prokaryotic and eukaryotic electron transfer chains. HCOs have evolved complex processes to assemble and metalate the multisubunit structures that are required for enzyme activity. In particular, the copper-binding Sco chaperone is required for the correct assembly and metalation of the mixed-valence dinuclear CuA center, which resides in subunit 2, and accepts electrons into the oxidase from cytochrome c. The chemistry at the heart of these cellular processes involves the exchange of CuI or CuII from chaperone to enzyme or transporter via molecular mechanisms which are only poorly understood. In this proposal we build on advanced spectroscopic methodologies developed in our laboratory to unravel the detailed mechanisms of metal transport and exchange. These experiments are underpinned by our expertise in X-ray absorption spectroscopy which is the only spectroscopic technique capable of directly observing the CuI state as it is transferred along the homeostatic pathways. Specifically we propose to apply the technique of Se labeling coupled to XAS detection to investigate the metallation of the CuA center by its putative chaperone Sco and by the periplasmic copper-binding protein PCuAC or its homologues. Spectroscopic and kinetic studies of metal transfer will be correlated with function across a number of different prokaryotic and eukaryotic systems, using relationships between mutagenesis and phenotype to elucidate the structural determinants of the transfer mechanism. These studies will lead to a better understanding of the molecular basis of copper trafficking and will aid in combating diseases of aberrant copper homeostasis.

Public Health Relevance

Cells have evolved complex molecular machinery to maintain metal ion concentrations within a narrow range since free metal ions are highly cytotoxic. Because of this, genetic defects in the regulation of cellular copper levels lead to diseases such as Menkes and Wilson diseases, while neurodegenerative disorders including ALS, Alzheimer's, and Parkinson's disease have been associated with mutations in copper enzymes (SOD), or abnormal copper levels. This proposal aims to develop new methods based on advanced spectroscopy to gain a more detailed understanding of the molecular mechanisms involved in metal ion trafficking, and thereby to contribute to the science that will eventually provide cures for diseases of aberrant metal ion homeostasis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Engineering (All Types)
Schools of Medicine
United States
Zip Code
Chacón, Kelly N; Mealman, Tiffany D; McEvoy, Megan M et al. (2014) Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proc Natl Acad Sci U S A 111:15373-8
Clark, Kevin M; Yu, Yang; van der Donk, Wilfred A et al. (2014) Modulating the Copper-Sulfur Interaction in Type 1 Blue Copper Azurin by Replacing Cys112 with Nonproteinogenic Homocysteine. Inorg Chem Front 1:153-158
Siluvai, Gnana S; Nakano, Michiko; Mayfield, Mary et al. (2011) The essential role of the Cu(II) state of Sco in the maturation of the Cu(A) center of cytochrome oxidase: evidence from H135Met and H135SeM variants of the Bacillus subtilis Sco. J Biol Inorg Chem 16:285-97
Siluvai, Gnana S; Mayfield, Mary; Nilges, Mark J et al. (2010) Anatomy of a red copper center: spectroscopic identification and reactivity of the copper centers of Bacillus subtilis Sco and its Cys-to-Ala variants. J Am Chem Soc 132:5215-26
Clark, Kevin M; Yu, Yang; Marshall, Nicholas M et al. (2010) Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J Am Chem Soc 132:10093-101
Siluvai, Gnana S; Nakano, Michiko M; Mayfield, Mary et al. (2009) H135A controls the redox activity of the Sco copper center. Kinetic and spectroscopic studies of the His135Ala variant of Bacillus subtilis Sco. Biochemistry 48:12133-44
Loftin, Isabell R; Blackburn, Ninian J; McEvoy, Megan M (2009) Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. J Biol Inorg Chem 14:905-12
Bagai, Ireena; Rensing, Christopher; Blackburn, Ninian J et al. (2008) Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 47:11408-14
Bagai, Ireena; Liu, Wenbo; Rensing, Christopher et al. (2007) Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. J Biol Chem 282:35695-702
Loftin, Isabell R; Franke, Sylvia; Blackburn, Ninian J et al. (2007) Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Protein Sci 16:2287-93

Showing the most recent 10 out of 19 publications