Interactions between proteins play crucial roles in biology. Over- or under-expression of specific proteins can lead to aberrant interaction levels that contribute to disease. In addition, many pathogens depend on protein-protein interactions for infection. Thus, developing tools that lead to new inhibitors of specific protein-protein interactions, or molecules that can substitute for a missing or under- expressed partner, is a goal of considerable importance. Such molecules can serve as powerful tools for elucidating the biological functions of particular interactions, and they can provide the basis for new therapeutic agents. The proposed research is intended to generate new strategies for creating molecules that bind tightly to recognition surfaces displayed by natural proteins, surfaces that evolved to form specific contacts with other proteins or large peptides. The compounds we seek could disrupt deleterious protein associations or boost inadequate interaction levels. Currrent approaches to these goals are based on small molecules, engineered proteins or medium-sized conventional peptides (i.e., peptides comprised exclusively of -amino acid residues). Although these approaches can be successful, each has limitations. For example, small molecules often cannot cover enough surface area on a given protein for effective inhibition of association with a large partner protein. Proteins engineered for therapeutic applications can be expensive to produce and store, and longterm use can provoke a deleterious immune response. Medium-sized conventional peptides are often degraded rapidly by proteases in vivo. Our approach is intended to complement these existing strategies for generating molecules that bind to specific surfaces on target proteins. We focus on oligomers that contain both - and -amino acid residue (" / -peptides"). Our recent work shows that / -peptides containing 25- 33% residues interspersed evenly among the residues can be highly resistant to proteolysis. In addition, we have found that residues with a specific cyclic constraint can strongly stabilize an - helix-like conformation. One aspect of the proposed research involves a search for alternative residue constraints that match non-helical local conformations commonly adopted by -amino acid residues in folded proteins. This goal is being pursued via a combination of experimental and computational methods, in the context of inhibiting the association of a soluble signaling protein with its cell-surface receptors. Another aspect of the proposed research focuses on new agonists for B- family GPCRs. These studies allow us to determine whether / -peptide analogues of natural agonists can display functional selectivity in their interactions with the target receptors ("biased agonism"). The over-arching goal of this program is to develop broadly applicable design strategies that can be implemented in many laboratories and that will be useful for many biomedically important protein-protein interactions.

Public Health Relevance

Specific interactions between proteins are essential for normal physiology, but aberrant protein interaction patterns can lead to human disease. We are conducting fundamental studies that should lead to a new strategy for preventing deleterious protein associations, or for augmenting interactions that are insufficient. Thus, although the proposed studies are very basic, this research could lay the foundation for development of new types of medicines.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Smith, Ward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Arts and Sciences
United States
Zip Code
Cheloha, Ross W; Maeda, Akira; Dean, Thomas et al. (2014) Backbone modification of a polypeptide drug alters duration of action in vivo. Nat Biotechnol 32:653-5
Johnson, Lisa M; Barrick, Stacey; Hager, Marlies V et al. (2014) A potent ?/?-peptide analogue of GLP-1 with prolonged action in vivo. J Am Chem Soc 136:12848-51
Arnold, Ulrich; Huck, Bayard R; Gellman, Samuel H et al. (2013) Protein prosthesis: ?-peptides as reverse-turn surrogates. Protein Sci 22:274-9
Smith, Brian J; Lee, Erinna F; Checco, James W et al. (2013) Structure-guided rational design of ?/?-peptide foldamers with high affinity for BCL-2 family prosurvival proteins. Chembiochem 14:1564-72
Johnson, Lisa M; Gellman, Samuel H (2013) ?-Helix mimicry with ?/?-peptides. Methods Enzymol 523:407-29
Haase, Holly S; Peterson-Kaufman, Kimberly J; Lan Levengood, Sheeny K et al. (2012) Extending foldamer design beyond ýý-helix mimicry: ýý/ýý-peptide inhibitors of vascular endothelial growth factor signaling. J Am Chem Soc 134:7652-5
Boersma, Melissa D; Haase, Holly S; Peterson-Kaufman, Kimberly J et al. (2012) Evaluation of diverse ýý/ýý-backbone patterns for functional ýý-helix mimicry: analogues of the Bim BH3 domain. J Am Chem Soc 134:315-23
Johnson, Lisa M; Mortenson, David E; Yun, Hyun Gi et al. (2012) Enhancement of ýý-helix mimicry by an ýý/ýý-peptide foldamer via incorporation of a dense ionic side-chain array. J Am Chem Soc 134:7317-20
Johnson, Lisa M; Horne, W Seth; Gellman, Samuel H (2011) Broad distribution of energetically important contacts across an extended protein interface. J Am Chem Soc 133:10038-41
Lee, Erinna F; Smith, Brian J; Horne, W Seth et al. (2011) Structural basis of Bcl-xL recognition by a BH3-mimetic ýý/ýý-peptide generated by sequence-based design. Chembiochem 12:2025-32

Showing the most recent 10 out of 63 publications