Bacteria from the genera Bacillus and Clostridium produce unusually durable and long-lived spores that are the infectious agent of Anthrax and Botulism, and which are assembled in the cytoplasm of another cell. This unique cell within a cell structure is produced by the phagocytosis-like process of engulfment, during which the membrane of the larger mother cell migrates around the smaller forespore, until it is completely enclosed within the mother cell cytoplasm. Engulfment provides a dramatic example of the dynamic capabilities of the bacterial cell, but its mechanism remains unclear. Previously, the only engulfment mutants blocked septal thinning, during which peptidoglycan within the septum is thinned in preparation for membrane migration. We have developed new tools for the study of engulfment, and identified mutants defective in membrane migration, and in the final step of engulfment, membrane fusion. The membrane fusion defective mutants affect a protein that is both highly conserved and essential in many species. This protein localizes to site of division and is involved in the final stages of chromosome segregation, suggesting that it may also be involved in membrane fusion at the completion of cell division, a process about which little is known. Sporulation-specific enzymes are required to hydrolyze peptidoglycan during septal thinning, and we will test if vegetative autolysins can partially substitute for the sporulation specific enzymes. Autolysins are found in all bacteria (the Bacillus subtilis genome is predicted encode more than 30such enzymes), and are thought to allow peptidoglycan remodeling for cell elongation and division. However, these enzymes are potentially lethal, since unless they are tightly regulated both spatially and temporally, their activity can result in cell lysis. Indeed, the lethality of many commercial antibiotics requires autolysins. Engulfment provides an ideal system for understanding how bacteria control these potentially lethal enzymes, which are attractive targets for novel antibiotics. We will take a combined cell biological, genetic and biochemical approach to study the spatial regulation of peptidoglycan hydrolysis, the mechanism of membrane fusion in bacterial cells, as well as to understand how bacteria move and localize macromolecules within their cells

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM057045-06
Application #
6582436
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Program Officer
Shapiro, Bert I
Project Start
1998-01-01
Project End
2006-12-31
Budget Start
2003-01-01
Budget End
2003-12-31
Support Year
6
Fiscal Year
2003
Total Cost
$303,457
Indirect Cost
Name
University of California San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Riley, Eammon P; Trinquier, Aude; Reilly, Madeline L et al. (2018) Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of ?H and ?A. Mol Microbiol 108:45-62
Lopez-Garrido, Javier; Ojkic, Nikola; Khanna, Kanika et al. (2018) Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology. Cell 172:758-770.e14
Miller, Marina; Tam, Arvin B; Mueller, James L et al. (2017) Cutting Edge: Targeting Epithelial ORMDL3 Increases, Rather than Reduces, Airway Responsiveness and Is Associated with Increased Sphingosine-1-Phosphate. J Immunol 198:3017-3022
Chaikeeratisak, Vorrapon; Nguyen, Katrina; Khanna, Kanika et al. (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:194-197
Lamsa, Anne; Lopez-Garrido, Javier; Quach, Diana et al. (2016) Rapid Inhibition Profiling in Bacillus subtilis to Identify the Mechanism of Action of New Antimicrobials. ACS Chem Biol 11:2222-31
Nguyen, Kim B; Sreelatha, Anju; Durrant, Eric S et al. (2016) Phosphorylation of spore coat proteins by a family of atypical protein kinases. Proc Natl Acad Sci U S A 113:E3482-91
Piña, Francisco Javier; Fleming, Tinya; Pogliano, Kit et al. (2016) Reticulons Regulate the ER Inheritance Block during ER Stress. Dev Cell 37:279-88
Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario et al. (2015) Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 17:3391-406
Yen Shin, Jae; Lopez-Garrido, Javier; Lee, Sang-Hyuk et al. (2015) Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. Elife 4:e06474
Ojkic, Nikola; López-Garrido, Javier; Pogliano, Kit et al. (2014) Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS Comput Biol 10:e1003912

Showing the most recent 10 out of 47 publications