The long range goal of this project is to study structure-function relationships in nitric oxide synthase (NOS) and to develop isoform selective NOS inhibitors and drugs. NOS is the enzyme responsible for the biosynthesis of NO, a critically important signaling molecule in the cardiovascular and nervous systems and also is a cytotoxic agents in the immune system. Mammals have 3 NOS isoforms: eNOS (endothelial NOS, regulates blood pressure), nNOS (neuronal NOS, neural signaling), and iNOS (inducible NOS, immune system). The over production of NO by nNOS is associated with a number of neuro-degenerative processes and thus, drugs that selectively block nNOS should be of considerable therapeutic benefit. Selectivity is important since the goal is to block nNOS but not eNOS since eNOS is critical in maintaining proper vascular tone and blood pressure. This is a challenging problem since the active site of all 3 NOS isoforms are nearly identical and a majority of well known NOS inhibitors are not selective. Using a combination of crystallography, computational chemistry, and medicinal chemistry nNOS-selective compounds have been developed, tested, and shown to be very effective in preventing ischemic brain damage in animal models. Our future goals are to further build on this initial work and to exploit new druggable target sites that have been discovered. With respect to structure-function studies, future efforts will focus on conformational dynamics important for function and solving the structure of novel NOSs discovered via bioinformatic searches of new genomes.

Public Health Relevance

This proposal centers on structure function relationships in nitric oxide synthase or NOS. NOS is the enzyme responsible of the biosynthesis of the important signaling molecule, nitric oxide (NO). The over and under production of NO is associated with a number of pathological conditions and therefore is an important drug design target.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM057353-15
Application #
8294702
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Smith, Ward
Project Start
1998-05-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
15
Fiscal Year
2012
Total Cost
$313,305
Indirect Cost
$103,425
Name
University of California Irvine
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Poulos, Thomas L (2014) Heme enzyme structure and function. Chem Rev 114:3919-62
Chreifi, Georges; Li, Huiying; McInnes, Craig R et al. (2014) Communication between the zinc and tetrahydrobiopterin binding sites in nitric oxide synthase. Biochemistry 53:4216-23
Astashkin, Andrei V; Chen, Li; Zhou, Xixi et al. (2014) Pulsed electron paramagnetic resonance study of domain docking in neuronal nitric oxide synthase: the calmodulin and output state perspective. J Phys Chem A 118:6864-72
Kang, Soosung; Tang, Wei; Li, Huiying et al. (2014) Nitric oxide synthase inhibitors that interact with both heme propionate and tetrahydrobiopterin show high isoform selectivity. J Med Chem 57:4382-96
Li, Huiying; Jamal, Joumana; Plaza, Carla et al. (2014) Structures of human constitutive nitric oxide synthases. Acta Crystallogr D Biol Crystallogr 70:2667-74
Jing, Qing; Li, Huiying; Roman, Linda J et al. (2014) Combination of chiral linkers with thiophenecarboximidamide heads to improve the selectivity of inhibitors of neuronal nitric oxide synthase. Bioorg Med Chem Lett 24:4504-10
Cinelli, Maris A; Li, Huiying; Chreifi, Georges et al. (2014) Simplified 2-aminoquinoline-based scaffold for potent and selective neuronal nitric oxide synthase inhibition. J Med Chem 57:1513-30
Li, Huiying; Jamal, Joumana; Delker, Silvia et al. (2014) The mobility of a conserved tyrosine residue controls isoform-dependent enzyme-inhibitor interactions in nitric oxide synthases. Biochemistry 53:5272-9
Huang, He; Li, Huiying; Yang, Sun et al. (2014) Potent and selective double-headed thiophene-2-carboximidamide inhibitors of neuronal nitric oxide synthase for the treatment of melanoma. J Med Chem 57:686-700
Holden, Jeffrey K; Lim, Nathan; Poulos, Thomas L (2014) Identification of redox partners and development of a novel chimeric bacterial nitric oxide synthase for structure activity analyses. J Biol Chem 289:29437-45

Showing the most recent 10 out of 50 publications