Bacteria adapt to changing environments in complex ways, for example by changing their programs of gene expression and by modifying or degrading proteins. Such regulatory events are vital for the survival of pathogens in the human body and their understanding is fundamental to both the control of infectious diseases and for our understanding of biology. The bacterium Bacillus subtilis is an important model organism, which continues to be intensively studied in a number of laboratories and which has contributed in important ways to the investigation of gene regulation. In particular, this organism undergoes a number of developmental adaptations to stress, including the activation of its ability to be transformed by environmental DNA, the formation of biofilms and of resistant spores. These adaptations involve decision making, and indeed a single B. subtilis culture contains cells that have undergone transitions to each of these states. This cell-type heterogeneity is probably for bet-hedging in the face of a changeable environment. Each of the developmental states mentioned above is relevant for public health. Transformation is important for the transfer of antibiotic resistance and virulence genes between bacteria, biofilms are of medical importance because some pathogens form biofilms in the human body, for example on in-dwelling catheters and sporulation is an essential part of the life cycle of the causative agent of anthrax and of clostridia, which causes tetanus. The present application concerns several of the most important mechanisms that regulate the transitions of a single cell to each of these adaptive states. Although this choice is random, the likelihood of each transition is highly regulated and dependent on environmental conditions. We will explore a number of transcription factors that are known to influence these likelihoods as well as the role of protein modification. We will place emphasis on the interrelationships among these adaptations, for example asking how cells become transformable in the context of biofilm formation. The logic of the signaling network that governs expression of the various adaptive states will be studied and the relevant molecular interactions will be investigated using genetic, biochemical, cell biological and genomic approaches. We will focus attention on the acetylation of several key proteins, the regulation of protein degradation and the control of protein phosphorylation as regulatory events.

Public Health Relevance

The proposed work will investigate fundamental regulatory mechanisms using the model bacterium Bacillus subtilis, including the process that enables the transfer of virulence and antibiotic resistance genes between bacteria, the formation of biofilms, which in many bacteria is essential for pathogenicity and the formation of resistant spores.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM057720-47
Application #
9094616
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Melillo, Amanda A
Project Start
1977-06-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
47
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Rutgers University
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
Tanner, Andrew W; Carabetta, Valerie J; Dubnau, David (2018) ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Mol Microbiol 108:178-186
Diethmaier, Christine; Chawla, Ravi; Canzoneri, Alexandra et al. (2017) Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 106:367-380
Carabetta, Valerie J; Cristea, Ileana M (2017) Regulation, Function, and Detection of Protein Acetylation in Bacteria. J Bacteriol 199:
Tanner, Andrew W; Carabetta, Valerie J; Martinie, Ryan J et al. (2017) The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S]2+ clusters and may respond to redox changes. Mol Microbiol 104:837-850
Dubnau, Eugenie J; Carabetta, Valerie J; Tanner, Andrew W et al. (2016) A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 101:606-24
Miras, Mathieu; Dubnau, David (2016) A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 7:1868
Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W et al. (2016) Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth. mSystems 1:
Hahn, Jeanette; Tanner, Andrew W; Carabetta, Valerie J et al. (2015) ComGA-RelA interaction and persistence in the Bacillus subtilis?K-state. Mol Microbiol 97:454-71
Carabetta, Valerie J; Tanner, Andrew W; Greco, Todd M et al. (2013) A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol Microbiol 88:283-300
Mirouze, Nicolas; Dubnau, David (2013) Chance and Necessity in Bacillus subtilis Development. Microbiol Spectr 1:

Showing the most recent 10 out of 49 publications