RNA interference (RNAi) was originally described as a gene silencing mechanism triggered by the experimental introduction of double stranded (ds)RNA into the nematode C. elegans (Fire et al., 1998). The term RNAi is now used to refer to a diverse set of gene regulatory mechanisms that share common features including the involvement of a short 21-30 nucleotide (nt) long RNA and a protein cofactor of the Argonaute (RNase H-related) protein family. As an experimental tool, RNAi is of broad relevance to basic medical research in numerous fields, and RNAi therapeutics are now under development for several clinical applications. Furthermore, RNAi-related mechanisms function in conserved gene-regulatory pathways that are of basic and fundamental importance to human cellular and developmental biology. The proposed genetic and biochemical studies will advance our understanding of RNAi and related pathways. The ability to combine classical genetics with the newer disciplines of deep-sequencing, functional genomics and proteomics, make C. elegans an ideal system for these studies. In all animals studied to date, multiple RNAi-related pathways co-exist within cells. In C. elegans, three AGO pathways have the potential to mediate genome-wide or transcriptome-wide surveillance. These pathways are: (i) the WAGO pathway, which targets transposons, pseudogenes and other cryptic loci, as well as some protein encoding genes;(ii) the CSR-1 pathway, which targets most, if not all, protein-encoding mRNAs expressed in the germ line;and (iii) the PRG-1 pathway, which targets at least one transposon family but has more than fifteen thousand additional genomically-encoded small RNA cofactors whose targets are not known. An important goal of this work is to understand how these distinct pathways identify targets and mediate specific regulatory outcomes. The proposed studies will investigate the function and interrelationship of these pathways, using an array of biochemical, molecular and genetic approaches. The mechanisms and protein families that mediate RNAi are highly conserved in animals, therefore, insights from the proposed studies will be directly relevant to human biology and disease. PHS 398/2590 (Rev. 09/04, Reissued 4/2006) Page Continuation Format Page

Public Health Relevance

Project Narrative RNA interference (RNAi) is a highly conserved gene-silencing mechanism implicated in immunity, genome maintenance and developmental gene regulation in both plants and animals. The goal of this project is to investigate RNAi and related mechanisms so that we can better understand how they impact on development and human health. Insights from these studies may lead directly to new RNA-interference technologies for probing gene function in a variety of organisms including humans, and may ultimately lead to new diagnostics and therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM058800-15
Application #
8441550
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Bender, Michael T
Project Start
1999-01-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
15
Fiscal Year
2013
Total Cost
$333,359
Indirect Cost
$130,709
Name
University of Massachusetts Medical School Worcester
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Tang, Wen; Seth, Meetu; Tu, Shikui et al. (2018) A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans. Dev Cell 44:762-770.e3
Seth, Meetu; Shirayama, Masaki; Tang, Wen et al. (2018) The Coding Regions of Germline mRNAs Confer Sensitivity to Argonaute Regulation in C. elegans. Cell Rep 22:2254-2264
Ishidate, Takao; Ozturk, Ahmet R; Durning, Daniel J et al. (2018) ZNFX-1 Functions within Perinuclear Nuage to Balance Epigenetic Signals. Mol Cell 70:639-649.e6
Shen, En-Zhi; Chen, Hao; Ozturk, Ahmet R et al. (2018) Identification of piRNA Binding Sites Reveals the Argonaute Regulatory Landscape of the C. elegans Germline. Cell 172:937-951.e18
Gammon, Don B; Ishidate, Takao; Li, Lichao et al. (2017) The Antiviral RNA Interference Response Provides Resistance to Lethal Arbovirus Infection and Vertical Transmission in Caenorhabditis elegans. Curr Biol 27:795-806
Tang, Wen; Tu, Shikui; Lee, Heng-Chi et al. (2016) The RNase PARN-1 Trims piRNA 3' Ends to Promote Transcriptome Surveillance in C. elegans. Cell 164:974-84
Gammon, Don B; Mello, Craig C (2015) RNA interference-mediated antiviral defense in insects. Curr Opin Insect Sci 8:111-120
Hainer, Sarah J; Gu, Weifeng; Carone, Benjamin R et al. (2015) Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes Dev 29:362-78
Conte Jr, Darryl; MacNeil, Lesley T; Walhout, Albertha J M et al. (2015) RNA Interference in Caenorhabditis elegans. Curr Protoc Mol Biol 109:26.3.1-30
Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte Jr, Darryl et al. (2015) A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi. Cell 160:407-19

Showing the most recent 10 out of 35 publications