Lantibiotics are post-translationally modified peptide antibiotics. Nisin, its best known member, has been used for decades in the food industry without significant development of resistance. Other lantibiotics are under investigation or in clinical trials for the treatment of cystic fibrosis and asthma, the elimination of tooth-decay causing bacteria, and for the treatment of multi-drug resistant bacteria. In this grant application we seek to extend our past success towards the use of the biosynthetic machinery to make analogs and to better understand their mechanism of substrate recognition and catalysis. Our goals are: 1. Understand the enzymes involved in crosslink formation 2. Engineer efficient processes to manipulate the structures of posttranslationally modified peptide natural products 3. Investigate new posttranslationally modified peptide natural products.

Public Health Relevance

Numerous reports of multi-drug resistant bacterial strains have appeared in recent years, with several strains posing the serious threat of becoming immune against all commercially available antibiotics. It is evident that in order to prevent potential epidemic outbreaks of infectious diseases, a renewed focus on antibiotic research is highly desired. The group of posttranslationally modified peptide antibiotics has much promise as a new line of defense against pathogenic bacteria and many members are under evaluation for human applications. Currently, no methods exist for in depth medicinal chemistry on these compounds to improve their pharmacological properties. This research program seeks to improve technology that will allow doing this by relying on the biosynthetic machinery. Furthermore, we propose studies to better understand the enzymes involved in crosslink formation in this grant application. Additionally, we will extend our work to new promising compounds and will investigate the use of the lantibiotic enzymes for applications other than lantibiotic engineering.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM058822-14
Application #
8519466
Study Section
Macromolecular Structure and Function E Study Section (MSFE)
Program Officer
Gerratana, Barbara
Project Start
1999-02-01
Project End
2016-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
14
Fiscal Year
2013
Total Cost
$266,504
Indirect Cost
$42,624
Name
University of Illinois Urbana-Champaign
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Yang, Xiao; Lennard, Katherine R; He, Chang et al. (2018) A lanthipeptide library used to identify a protein-protein interaction inhibitor. Nat Chem Biol 14:375-380
Repka, Lindsay M; Hetrick, Kenton J; Chee, See Hyun et al. (2018) Characterization of Leader Peptide Binding During Catalysis by the Nisin Dehydratase NisB. J Am Chem Soc 140:4200-4203
An, Linna; Cogan, Dillon P; Navo, Claudio D et al. (2018) Substrate-assisted enzymatic formation of lysinoalanine in duramycin. Nat Chem Biol 14:928-933
Burkhart, Brandon J; Kakkar, Nidhi; Hudson, Graham A et al. (2017) Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products. ACS Cent Sci 3:629-638
Hetrick, Kenton J; van der Donk, Wilfred A (2017) Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol 38:36-44
Garg, Neha; Goto, Yuki; Chen, Ting et al. (2016) Characterization of the stereochemical configuration of lanthionines formed by the lanthipeptide synthetase GeoM. Biopolymers 106:834-842
Walker, Mark C; van der Donk, Wilfred A (2016) The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 43:419-30
Tang, Weixin; Thibodeaux, Gabrielle N; van der Donk, Wilfred A (2016) The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis. ACS Chem Biol 11:2438-46
Zhang, Zhengan; Hudson, Graham A; Mahanta, Nilkamal et al. (2016) Biosynthetic Timing and Substrate Specificity for the Thiopeptide Thiomuracin. J Am Chem Soc 138:15511-15514
Ortega, Manuel A; van der Donk, Wilfred A (2016) New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products. Cell Chem Biol 23:31-44

Showing the most recent 10 out of 112 publications