Preservation of genome integrity is essential for the health and viability of all organisms, including humans. Understandably, all organisms have multiple mechanisms of maintaining genome stability. One of these systems is the replication checkpoint, which detects stalled or broken replication forks. It protects genome integrity by arresting cell division, by stabilizing the stalled forks, and by ensuring an adequate supply of replication proteins and nucleotides needed to complete DNA synthesis once the impediments to fork progression are removed. In humans, mutations that impair the replication checkpoint are causally associated with genomic instability, developmental, neurological and immunological diseases, and a predisposition for cancer. Deciphering how this checkpoint works, and more generally what happens when replication forks stall, rearrange or collapse, is therefore a fascinating biological problem that also has broad implications for improving human health. This application proposes to use fission yeast to study how eukaryotic cells maintain genome integrity during DNA replication. This organism has played a central role in the discovery and analyses of genome stability mechanisms. The proposal has three specific aims. The first is to identify and characterize substrates of the replication checkpoint kinase Cds1.
The second aim i s to understand the role of a BRCT domain protein that is needed to tolerate replication stress.
The third aim i s to determine how cells recapture broken replication forks with a focus on the function of the structure-specific endonuclease Mus81. A variety of techniques will be employed: yeast molecular genetics, chromatin immunoprecipitation, protein interaction screens involving yeast two-hybrid and multidimensional protein identification technology, structural biology, deconvolution microscopy of fluorescently tagged protein in live cells, and genome-wide analyses of proteins localized to site of DNA damage using high density oligonucleotide microarrays. All of the proteins analyzed in this proposal have orthologs in humans whose functions are incompletely understood. Therefore, the findings from this study will serve as a paradigm for the investigation of genome stability mechanisms in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM059447-12
Application #
7845090
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Hagan, Ann A
Project Start
1999-05-01
Project End
2012-05-31
Budget Start
2010-06-01
Budget End
2012-05-31
Support Year
12
Fiscal Year
2010
Total Cost
$422,111
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Zhu, Min; Zhao, Hongchang; Limbo, Oliver et al. (2018) Mre11 complex links sister chromatids to promote repair of a collapsed replication fork. Proc Natl Acad Sci U S A 115:8793-8798
Zhao, Hongchang; Zhu, Min; Limbo, Oliver et al. (2018) RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep 19:
Ganguly, Abantika; Guo, Lan; Sun, Lingling et al. (2018) Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 14:e1007595
Limbo, Oliver; Yamada, Yoshiki; Russell, Paul (2018) Mre11-Rad50-dependent activity of ATM/Tel1 at DNA breaks and telomeres in the absence of Nbs1. Mol Biol Cell 29:1389-1399
Sanchez, Arancha; Gadaleta, Mariana C; Limbo, Oliver et al. (2017) Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast. PLoS Genet 13:e1007013
Reubens, Michael C; Rozenzhak, Sophie; Russell, Paul (2017) Multi-BRCT Domain Protein Brc1 Links Rhp18/Rad18 and ?H2A To Maintain Genome Stability during S Phase. Mol Cell Biol 37:
Guo, Lan; Ganguly, Abantika; Sun, Lingling et al. (2016) Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3 (Bethesda) 6:3317-3333
Jensen, Kristi L; Russell, Paul (2016) Ctp1-dependent clipping and resection of DNA double-strand breaks by Mre11 endonuclease complex are not genetically separable. Nucleic Acids Res 44:8241-9
Petersen, Janni; Russell, Paul (2016) Growth and the Environment of Schizosaccharomyces pombe. Cold Spring Harb Protoc 2016:pdb.top079764
Sánchez, Arancha; Russell, Paul (2015) Ku stabilizes replication forks in the absence of Brc1. PLoS One 10:e0126598

Showing the most recent 10 out of 54 publications