When chromosomes are broken, cells activate a pathway, called the DNA damage checkpoint, to signal that damage has occurred. The inactivation of this checkpoint pathway is associated with many types of cancer, especially lymphoma and leukemia. The great majority of these checkpoint genes are conserved from humans to yeast. In fact, many of these genes have human homologs implicated in tumorigenesis. This application proposes to examine the mechanism by which the checkpoint is activated by DNA damage, and subsequently inactivated if that DNA damage cannot be repaired. In addition, we will examine the targets of this pathway and explore how the modification of these molecules by the checkpoint contributes to maintaining viability upon exposure to DNA damaging agents.

Public Health Relevance

Cancer is the result of uncontrolled cell division and is often initiated by mutations resulting from DNA damage. In this proposal, we outline experiments that characterize proteins responsible for regulating cell division in response to DNA damage. In doing this, we can better understand how cancers arise and the characteristics of tumors that can be used to selectively target them.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM059691-13
Application #
8126487
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Janes, Daniel E
Project Start
1999-08-01
Project End
2012-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
13
Fiscal Year
2011
Total Cost
$422,324
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Mark, Kevin G; Loveless, Theresa B; Toczyski, David P (2016) Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps). Nat Protoc 11:291-301
Downey, Michael; Johnson, Jeffrey R; Davey, Norman E et al. (2015) Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1. Mol Cell Proteomics 14:162-76
Loveless, Theresa B; Topacio, Benjamin R; Vashisht, Ajay A et al. (2015) DNA Damage Regulates Translation through ?-TRCP Targeting of CReP. PLoS Genet 11:e1005292
Edenberg, Ellen R; Mark, Kevin G; Toczyski, David P (2015) Ndd1 turnover by SCF(Grr1) is inhibited by the DNA damage checkpoint in Saccharomyces cerevisiae. PLoS Genet 11:e1005162
Edenberg, Ellen R; Vashisht, Ajay A; Topacio, Benjamin R et al. (2014) Hst3 is turned over by a replication stress-responsive SCF(Cdc4) phospho-degron. Proc Natl Acad Sci U S A 111:5962-7
Edenberg, Ellen R; Downey, Michael; Toczyski, David (2014) Polymerase stalling during replication, transcription and translation. Curr Biol 24:R445-52
Edenberg, Ellen R; Vashisht, Ajay; Benanti, Jennifer A et al. (2014) Rad53 downregulates mitotic gene transcription by inhibiting the transcriptional activator Ndd1. Mol Cell Biol 34:725-38
Downey, Michael; Knight, Britta; Vashisht, Ajay A et al. (2013) Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 23:1638-48
Berens, Theresa J; Toczyski, David P (2012) Keeping it together in times of stress: checkpoint function at stalled replication forks. Mol Cell 45:585-6
Berens, Theresa J; Toczyski, David P (2012) Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Mol Biol Cell 23:1058-67

Showing the most recent 10 out of 20 publications