G protein coupled receptors (GPCRs) mediate a large number of physiologic processes. A family of GPCRs that mediates the action of acetylcholine includes five members called muscarinic receptors (M1R-M5R). These receptors are implicated in a number of neurological disorders including depression, Alzheimer's and Parkinson's diseases. The activity and subcellular localization of GPCRs are controlled by a number of intracellular proteins. This proposal concentrates on understanding the regulation of type 3 muscarinic receptor (M3R) by a neurospecific regulator of G protein signaling (RGS), the Gbeta5-RGS7 complex. Recent original findings in this laboratory show that Gbeta5-RGS7 complex can inhibit M3R signaling via a novel mechanism that involves direct binding between M3R and RGS7. M3R activation also causes a dramatic change in subcellular localization of the Gbeta5-RGS7 complex. These phenomena occur in an M3R-selective manner. Furthermore, studies of mice lacking Gbeta5 revealed their similarity to mice lacking M3R. This project will test the hypothesis that the Gbeta5-RGS7 complex regulates M3R signaling via a novel mechanism and/or transfers signals from M3R to intracellular compartments in neurons.
Specific Aim 1 will determine structural elements of M3R and RGS7 that are involved in this interaction. Dominant mutants of M3R and RGS7 will be used as molecular tools in Specific Aims 2 and 3. In addition, a series of in vitro assays will be used to study the relationship between the Gbeta5-RGS7 complex and other binding partners of M3R.
Aim 2 will study subcellular re-localization of M3R and Gbeta5-RGS7 from the cytosol to endosomal vesicles. The experiments will use advanced imaging methodology, cell fractionation and biochemical approaches to identify subcellular compartments where M3R and Gbeta5-RGS7 re-localize upon receptor activation and search for novel binding partners of this protein complex.
Aim 3 will explore the physiologic significance of M3R:Gbeta5-RGS7 interaction in native cells. The experimental design is based on the discovery that Gbeta5 knockout mice have an increased level of epinephrine, which is consistent with high locomotor activity and other changes in these animals. The proposed study will concentrate on the analysis of catecholamine secretion by chromaffin cells of the adrenal medulla from Gbeta5 knockout mice. Experiments will also investigate the neuroendocrine PC12 cell lines with altered expression of Gbeta5- RGS7 and will utilize imaging and biochemical methods. This research will result in better understanding of regulation of neuronal muscarinic acetylcholine receptors, and illuminate novel roles of RGS proteins in regulation of signal transduction and other cellular functions.

Public Health Relevance

This proposal investigates molecular mechanisms that regulate the functions of the neuronal muscarinic acetylcholine receptor type 3. The experiments concentrate on a novel mechanism that involves a neuronal regulator of G protein signaling, RGS7. The proposed experiments will study the function of this protein using biochemical analyses, advanced imaging methods and studies of genetically modified mice. This research will contribute to understanding, at the molecular level, of cognitive, sensory, motor, metabolic and other functions of the nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM060019-13
Application #
8269802
Study Section
Molecular Neuropharmacology and Signaling Study Section (MNPS)
Program Officer
Dunsmore, Sarah
Project Start
1999-08-01
Project End
2014-07-31
Budget Start
2012-06-01
Budget End
2014-07-31
Support Year
13
Fiscal Year
2012
Total Cost
$315,896
Indirect Cost
$108,115
Name
University of Miami School of Medicine
Department
Pharmacology
Type
Schools of Medicine
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Levay, Konstantin; Slepak, Vladlen Z (2014) Regulation of Cop9 signalosome activity by the EF-hand Ca2+-binding protein tescalcin. J Cell Sci 127:2448-59
Karpinsky-Semper, Darla; Volmar, Claude-Henry; Brothers, Shaun P et al. (2014) Differential effects of the G?5-RGS7 complex on muscarinic M3 receptor-induced Ca2+ influx and release. Mol Pharmacol 85:758-68
Krizaj, David; Ryskamp, Daniel A; Tian, Ning et al. (2014) From mechanosensitivity to inflammatory responses: new players in the pathology of glaucoma. Curr Eye Res 39:105-19
Wang, Qiang; Levay, Konstantin; Chanturiya, Tatyana et al. (2011) Targeted deletion of one or two copies of the G protein ? subunit G?5 gene has distinct effects on body weight and behavior in mice. FASEB J 25:3949-57
Sandiford, Simone L; Wang, Qiang; Levay, Konstantin et al. (2010) Molecular organization of the complex between the muscarinic M3 receptor and the regulator of G protein signaling, Gbeta(5)-RGS7. Biochemistry 49:4998-5006
Levay, Konstantin; Slepak, Vladlen Z (2010) Up- or downregulation of tescalcin in HL-60 cells is associated with their differentiation to either granulocytic or macrophage-like lineage. Exp Cell Res 316:1254-62
Rosenzweig, Derek H; Nair, K Saidas; Levay, Konstantin et al. (2009) Interaction of retinal guanylate cyclase with the alpha subunit of transducin: potential role in transducin localization. Biochem J 417:803-12
Sandiford, Simone L; Slepak, Vladlen Z (2009) The Gbeta5-RGS7 complex selectively inhibits muscarinic M3 receptor signaling via the interaction between the third intracellular loop of the receptor and the DEP domain of RGS7. Biochemistry 48:2282-9
Slepak, Vladlen Z; Hurley, James B (2008) Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion. IUBMB Life 60:2-9
Grabowska, D; Jayaraman, M; Kaltenbronn, K M et al. (2008) Postnatal induction and localization of R7BP, a membrane-anchoring protein for regulator of G protein signaling 7 family-Gbeta5 complexes in brain. Neuroscience 151:969-82

Showing the most recent 10 out of 29 publications