Regulation of cAMP production requires an elaborate series of signaling molecules that are currently used as targets for drug intervention in the treatment of heart disease, hypertension, Schizophrenia, Parkinson's, asthma, chronic pain, and many more. Despite being a fundamental """"""""second messenger"""""""" in a huge array of important physiological processes and pathophysiological conditions, the molecular mechanisms that control the specificity and temporal aspects of cAMP actions are not well understood. The discovery of a large and complex family of proteins termed AKAPs likely play a major role in this regulation. AKAPs had originally been thought of as anchoring the cAMP-dependent protein kinase A (PKA), to downstream targets of cAMP/PKA actions. However, in recent studies we have found that several isoforms of the enzyme that produces cAMP, adenylyl cyclase (AC) are also found in complex with several AKAPs in both brain and heart, suggesting that the production of cAMP as well its downstream targets are co-localized. Further, we have found evidence that the upstream regulators of AC, heterotrimeric G proteins, are also a part of an AC complex through their binding to previously unrecognized sites on AC. This application seeks to understand how macromolecular complexes containing AC gives rise to dynamic and specific regulation of cAMP-controlled downstream events, such as ion channels involved in inflammatory pain and glutamate receptors modulating hippocampal synaptic activity.
Three specific aims are designed to address the hypothesis that, signaling complexes containing ACs are required for spatial and temporal regulation of cAMP-dependent processes.
Aim 1 will establish the function of pre-formed complexes of AC and heterotrimeric G proteins, Aim 2 will determine how AKAPs regulate AC activity and dynamics, and Aim 3 will determine the requirement of bound AC for AKAP function.

Public Health Relevance

Regulation of cAMP production requires an elaborate series of signaling molecules that are currently used as targets for drug intervention in the treatment of heart disease, hypertension, Schizophrenia, Parkinson's, asthma, chronic pain, and many more. Despite being a fundamental signaling molecule in physiological and pathophysiological conditions, the molecular mechanisms that control the specificity and temporal aspects of cAMP actions are not completely understood. This is particularly true for the enzyme that produces cAMP, adenylyl cyclase (AC). We have identified novel multi-protein complexes containing AC that control cAMP signaling in both brain and heart. The existence of these complexes suggests that the production of cAMP as well its downstream targets are co- localized. In addition, the combinations of specific AC isoforms and targets of cAMP actions are far more organized than previously appreciated. This application seeks to understand how macromolecular complexes containing AC gives rise to cAMP regulation and specificity, and to investigate the roles of these complexes in controlling processes involved in inflammatory pain and hippocampal synaptic regulation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM060419-12
Application #
8115168
Study Section
Special Emphasis Panel (ZRG1-CB-N (03))
Program Officer
Dunsmore, Sarah
Project Start
1999-12-01
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
12
Fiscal Year
2011
Total Cost
$294,030
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Biology
Type
Schools of Medicine
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Dessauer, Carmen W; Watts, Val J; Ostrom, Rennolds S et al. (2017) International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 69:93-139
Dessauer, Carmen W (2017) Shining a light on GPCR complexes. J Biol Chem 292:14290-14291
Brust, Tarsis F; Alongkronrusmee, Doungkamol; Soto-Velasquez, Monica et al. (2017) Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal 10:
Li, Yong; Baldwin, Tanya A; Wang, Yan et al. (2017) Loss of type 9 adenylyl cyclase triggers reduced phosphorylation of Hsp20 and diastolic dysfunction. Sci Rep 7:5522
Bavencoffe, Alexis; Li, Yong; Wu, Zizhen et al. (2016) Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation. J Neurosci 36:1660-8
Brand, Cameron S; Sadana, Rachna; Malik, Sundeep et al. (2015) Adenylyl Cyclase 5 Regulation by G?? Involves Isoform-Specific Use of Multiple Interaction Sites. Mol Pharmacol 88:758-67
Yakubovich, Daniel; Berlin, Shai; Kahanovitch, Uri et al. (2015) A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of G? and G??. PLoS Comput Biol 11:e1004598
Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng et al. (2015) Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. Elife 4:
Kahanovitch, Uri; Tsemakhovich, Vladimir; Berlin, Shai et al. (2014) Recruitment of G?? controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. J Physiol 592:5373-90
Farhy Tselnicker, Isabella; Tsemakhovich, Vladimir; Rishal, Ida et al. (2014) Dual regulation of G proteins and the G-protein-activated K+ channels by lithium. Proc Natl Acad Sci U S A 111:5018-23

Showing the most recent 10 out of 44 publications